Dejan Dašić, Miljan Vucetic, Nemanja Ilić, M. Stanković, M. Beko
{"title":"深度学习算法和架构在新一代移动网络中的应用","authors":"Dejan Dašić, Miljan Vucetic, Nemanja Ilić, M. Stanković, M. Beko","doi":"10.2298/sjee2103397d","DOIUrl":null,"url":null,"abstract":"Operators of modern mobile networks are faced with significant challenges in providing the requested level of service to an ever increasing number of user entities. Advanced machine learning techniques based on deep architectures and appropriate learning methods are recognized as promising ways of tackling the said challenges in many aspects of mobile networks, such as mobile data and mobility analysis, network control, network security and signal processing. Having firstly presented the background of deep learning and related technologies, the paper goes on to present the architectures used for deployment of deep learning in mobile networks. The paper continues with an overview of applications and services related to the new generation of mobile networks that employ deep learning methods. Finally, the paper presents practical use case of modulation classification as implementation of deep learning in an application essential for modern spectrum management. We complete this work by pinpointing future directions for research.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of deep learning algorithms and architectures in the new generation of mobile networks\",\"authors\":\"Dejan Dašić, Miljan Vucetic, Nemanja Ilić, M. Stanković, M. Beko\",\"doi\":\"10.2298/sjee2103397d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operators of modern mobile networks are faced with significant challenges in providing the requested level of service to an ever increasing number of user entities. Advanced machine learning techniques based on deep architectures and appropriate learning methods are recognized as promising ways of tackling the said challenges in many aspects of mobile networks, such as mobile data and mobility analysis, network control, network security and signal processing. Having firstly presented the background of deep learning and related technologies, the paper goes on to present the architectures used for deployment of deep learning in mobile networks. The paper continues with an overview of applications and services related to the new generation of mobile networks that employ deep learning methods. Finally, the paper presents practical use case of modulation classification as implementation of deep learning in an application essential for modern spectrum management. We complete this work by pinpointing future directions for research.\",\"PeriodicalId\":37704,\"journal\":{\"name\":\"Serbian Journal of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serbian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/sjee2103397d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/sjee2103397d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Application of deep learning algorithms and architectures in the new generation of mobile networks
Operators of modern mobile networks are faced with significant challenges in providing the requested level of service to an ever increasing number of user entities. Advanced machine learning techniques based on deep architectures and appropriate learning methods are recognized as promising ways of tackling the said challenges in many aspects of mobile networks, such as mobile data and mobility analysis, network control, network security and signal processing. Having firstly presented the background of deep learning and related technologies, the paper goes on to present the architectures used for deployment of deep learning in mobile networks. The paper continues with an overview of applications and services related to the new generation of mobile networks that employ deep learning methods. Finally, the paper presents practical use case of modulation classification as implementation of deep learning in an application essential for modern spectrum management. We complete this work by pinpointing future directions for research.
期刊介绍:
The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.