一种基于tsp的嵌套聚类方法解决多仓库异构车队路由问题

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2022-01-01 DOI:10.23967/j.rimni.2022.03.001
M. Shojaeefard, M. Mollajafari, S. Mousavitabar, M. Khordehbinan, H. Hosseinalibeiki
{"title":"一种基于tsp的嵌套聚类方法解决多仓库异构车队路由问题","authors":"M. Shojaeefard, M. Mollajafari, S. Mousavitabar, M. Khordehbinan, H. Hosseinalibeiki","doi":"10.23967/j.rimni.2022.03.001","DOIUrl":null,"url":null,"abstract":"The distribution of goods and urban services has made the issue of vehicle routing of particular importance to researchers. Advanced Routing Vehicle (RVRP) Rich Vehicle Routing Problem As a hybrid optimization problem, it is widely used in many transportation and logistics planning. The approach of this paper is to present a heuristic method for solving the problem called Nested Clustering for Traveling Salesman Problem (NC-TSP), in this method to optimize the search space, we break the problem in consecutive space. In the first step, using the nearest neighbor (Knn) algorithm with the center of each depot, and then using the fuzzy C-means clustering method within each cluster obtained from the Knn method, to find the optimal set of nodes. Then we solve the problem using the extension of MILP linear functions to the heterogeneous nature of the transport fleet and the warehouses that supply the goods, using the optimization algorithm (GA). The proposed approach, despite its great complexity, solves the problem to a large extent and shows promising cost-effective results in the existing criteria.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A TSP-based nested clustering approach to solve multi-depot heterogeneous fleet routing problem\",\"authors\":\"M. Shojaeefard, M. Mollajafari, S. Mousavitabar, M. Khordehbinan, H. Hosseinalibeiki\",\"doi\":\"10.23967/j.rimni.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of goods and urban services has made the issue of vehicle routing of particular importance to researchers. Advanced Routing Vehicle (RVRP) Rich Vehicle Routing Problem As a hybrid optimization problem, it is widely used in many transportation and logistics planning. The approach of this paper is to present a heuristic method for solving the problem called Nested Clustering for Traveling Salesman Problem (NC-TSP), in this method to optimize the search space, we break the problem in consecutive space. In the first step, using the nearest neighbor (Knn) algorithm with the center of each depot, and then using the fuzzy C-means clustering method within each cluster obtained from the Knn method, to find the optimal set of nodes. Then we solve the problem using the extension of MILP linear functions to the heterogeneous nature of the transport fleet and the warehouses that supply the goods, using the optimization algorithm (GA). The proposed approach, despite its great complexity, solves the problem to a large extent and shows promising cost-effective results in the existing criteria.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.03.001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.03.001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

商品和城市服务的分布使得车辆路线问题对研究人员来说特别重要。先进路线车辆(RVRP)富车辆路线问题作为一种混合优化问题,广泛应用于许多交通和物流规划中。本文的方法是提出一种启发式方法来解决旅行商问题的嵌套聚类问题(NC-TSP),该方法在优化搜索空间的同时,将问题分解为连续空间。在第一步中,使用以每个仓库为中心的最近邻(Knn)算法,然后使用由Knn方法得到的每个聚类内的模糊c均值聚类方法,找到最优节点集。然后利用优化算法(GA)将MILP线性函数扩展到运输车队和供应货物的仓库的异构性质,解决了这一问题。所提出的方法尽管非常复杂,但在很大程度上解决了问题,并在现有标准中显示出良好的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A TSP-based nested clustering approach to solve multi-depot heterogeneous fleet routing problem
The distribution of goods and urban services has made the issue of vehicle routing of particular importance to researchers. Advanced Routing Vehicle (RVRP) Rich Vehicle Routing Problem As a hybrid optimization problem, it is widely used in many transportation and logistics planning. The approach of this paper is to present a heuristic method for solving the problem called Nested Clustering for Traveling Salesman Problem (NC-TSP), in this method to optimize the search space, we break the problem in consecutive space. In the first step, using the nearest neighbor (Knn) algorithm with the center of each depot, and then using the fuzzy C-means clustering method within each cluster obtained from the Knn method, to find the optimal set of nodes. Then we solve the problem using the extension of MILP linear functions to the heterogeneous nature of the transport fleet and the warehouses that supply the goods, using the optimization algorithm (GA). The proposed approach, despite its great complexity, solves the problem to a large extent and shows promising cost-effective results in the existing criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1