{"title":"考虑突发事件的PMU优化部署电力系统状态估计","authors":"G. Morocho, D. Carrión","doi":"10.23967/j.rimni.2022.03.010","DOIUrl":null,"url":null,"abstract":"The present research proposes to design and apply a state estimator algorithm in electrical power systems, applying the Weighted Least Squares methodology, through a process called non-linear hybrid estimator, the same one that uses measurements from PMUs and conventional measurements. in addition, to find the optimal PMU locations respecting the observability and redundancy restrictions for the Electric Power Systems, through mixed integer linear programming, considering the N-1 contingencies in the SEP. The proposed state estimator is adjusted to the measurements obtained, in the presence of contingencies in the SEP. The simulations obtained as a result of the implementation of the hybrid state estimator show that the proposal improves the precision of the estimator and the speed of convergence, considering the minimum error of system measurements and the number of PMUs placed in the Power System, after a contingency occurs, which may be the departure of a PMU or the loss of one of the transmission lines of the SEP.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State estimation of electrical power systems based on optimal deployment of PMU considering contingencies\",\"authors\":\"G. Morocho, D. Carrión\",\"doi\":\"10.23967/j.rimni.2022.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research proposes to design and apply a state estimator algorithm in electrical power systems, applying the Weighted Least Squares methodology, through a process called non-linear hybrid estimator, the same one that uses measurements from PMUs and conventional measurements. in addition, to find the optimal PMU locations respecting the observability and redundancy restrictions for the Electric Power Systems, through mixed integer linear programming, considering the N-1 contingencies in the SEP. The proposed state estimator is adjusted to the measurements obtained, in the presence of contingencies in the SEP. The simulations obtained as a result of the implementation of the hybrid state estimator show that the proposal improves the precision of the estimator and the speed of convergence, considering the minimum error of system measurements and the number of PMUs placed in the Power System, after a contingency occurs, which may be the departure of a PMU or the loss of one of the transmission lines of the SEP.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.03.010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.03.010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
State estimation of electrical power systems based on optimal deployment of PMU considering contingencies
The present research proposes to design and apply a state estimator algorithm in electrical power systems, applying the Weighted Least Squares methodology, through a process called non-linear hybrid estimator, the same one that uses measurements from PMUs and conventional measurements. in addition, to find the optimal PMU locations respecting the observability and redundancy restrictions for the Electric Power Systems, through mixed integer linear programming, considering the N-1 contingencies in the SEP. The proposed state estimator is adjusted to the measurements obtained, in the presence of contingencies in the SEP. The simulations obtained as a result of the implementation of the hybrid state estimator show that the proposal improves the precision of the estimator and the speed of convergence, considering the minimum error of system measurements and the number of PMUs placed in the Power System, after a contingency occurs, which may be the departure of a PMU or the loss of one of the transmission lines of the SEP.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.