大型悬臂盖梁装配式支架施工监测及有限元仿真

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2023-01-01 DOI:10.23967/j.rimni.2023.01.001
C. Qu, H. Fang, Q. Feng
{"title":"大型悬臂盖梁装配式支架施工监测及有限元仿真","authors":"C. Qu, H. Fang, Q. Feng","doi":"10.23967/j.rimni.2023.01.001","DOIUrl":null,"url":null,"abstract":"The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction monitoring and finite element simulation of assembly support for large cantilever cover beam\",\"authors\":\"C. Qu, H. Fang, Q. Feng\",\"doi\":\"10.23967/j.rimni.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2023.01.001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.01.001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对大型悬臂盖梁装配式支座进行研究,通过对实际工程中装配式支座的应变和位移发展过程进行实时监测。对支架进行了建模,并对实际工况进行了数值模拟。监测数据和分析结果表明,支护整体应力比小于30%。待支撑的混凝土结构硬化后,卸载支撑框架。当应力比减小到10%以下时,为拆除支撑框架的最佳时机。模拟得到的最大应变不超过理论最大应变的66.26%。实际施工条件和支架的空间形式影响受力情况,导致在某些阶段与理论最大应变存在偏差。分析结果和趋势反映出此类框架杆的利用率较低。研究结果可为大型悬臂盖梁拼装支撑架的拓扑优化提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction monitoring and finite element simulation of assembly support for large cantilever cover beam
The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1