{"title":"考虑抗剪强度随深度变化的可靠性理论稳定性评价","authors":"T. Doan, T. Tran, V. Le, T. Phoung Doan","doi":"10.23967/j.rimni.2023.02.002","DOIUrl":null,"url":null,"abstract":") of the ground does not change. Therefore, this method is no longer appropriate once utilizing the structure because of leading to slope instability and causing landslides that damage to the slope after a period of exploitation. The experimental studies have shown that the shear resistance parameter ( � , �) of the soil ground changes randomly with depth. As a result, current mechanical computational models are no longer valid. This paper proposes a new model to analyze stability based on reliability theory with the change of shear resistance parameters by depth. Firstly, by using Karhunen – Loeve series, the result of slope stability coefficient of the proposed model is smaller than those without consideration of shear resistance variation ( � , �) by depth. Then, by using Monte - Carlo simulations (n=1000) combined with Karhunen – Loeve series, the results obtained are different from those which only consider the static problem, so the problem of random quantities and the probability of failure increase significantly.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of stability for reliability theory in consideration of change of shear resistance by depth\",\"authors\":\"T. Doan, T. Tran, V. Le, T. Phoung Doan\",\"doi\":\"10.23967/j.rimni.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\") of the ground does not change. Therefore, this method is no longer appropriate once utilizing the structure because of leading to slope instability and causing landslides that damage to the slope after a period of exploitation. The experimental studies have shown that the shear resistance parameter ( � , �) of the soil ground changes randomly with depth. As a result, current mechanical computational models are no longer valid. This paper proposes a new model to analyze stability based on reliability theory with the change of shear resistance parameters by depth. Firstly, by using Karhunen – Loeve series, the result of slope stability coefficient of the proposed model is smaller than those without consideration of shear resistance variation ( � , �) by depth. Then, by using Monte - Carlo simulations (n=1000) combined with Karhunen – Loeve series, the results obtained are different from those which only consider the static problem, so the problem of random quantities and the probability of failure increase significantly.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2023.02.002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.02.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of stability for reliability theory in consideration of change of shear resistance by depth
) of the ground does not change. Therefore, this method is no longer appropriate once utilizing the structure because of leading to slope instability and causing landslides that damage to the slope after a period of exploitation. The experimental studies have shown that the shear resistance parameter ( � , �) of the soil ground changes randomly with depth. As a result, current mechanical computational models are no longer valid. This paper proposes a new model to analyze stability based on reliability theory with the change of shear resistance parameters by depth. Firstly, by using Karhunen – Loeve series, the result of slope stability coefficient of the proposed model is smaller than those without consideration of shear resistance variation ( � , �) by depth. Then, by using Monte - Carlo simulations (n=1000) combined with Karhunen – Loeve series, the results obtained are different from those which only consider the static problem, so the problem of random quantities and the probability of failure increase significantly.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.