{"title":"密度连续变化流体中潜艇内孤立波载荷特性的数值研究","authors":"Z. Qu, A. Lai, B. Lin","doi":"10.23967/j.rimni.2022.09.002","DOIUrl":null,"url":null,"abstract":"Internal solitary waves (ISW) often appear in the actual ocean and carry huge energy. In order to study the interaction between the ISW and the underwater objects, considering the variation law of the fluid density along the depth direction in the actual ocean, the numerical calculation model for the ISW and the submarine in the stratified fluid is established based on the Korteweg de Vres (KdV) theory and the RANS method. The load characteristics of the ISW on the submarine are studied by using the overset mesh technology and the VOF method. When the submarine passes through the ISW, the change of its buoyancy will cause a sharp change in the vertical load. The ISW-induced flow field will also affect the force on the submarine. The ISW-induced forces increase with the increase of the ISW amplitudes. When the submarine is completely below the peak of the waveform, the load is mainly affected by the flow field structure; the force amplitude is small, and the impact of the submergence depth is small.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of load characteristics by internal solitary wave on submarines in fluids with continuous density change\",\"authors\":\"Z. Qu, A. Lai, B. Lin\",\"doi\":\"10.23967/j.rimni.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal solitary waves (ISW) often appear in the actual ocean and carry huge energy. In order to study the interaction between the ISW and the underwater objects, considering the variation law of the fluid density along the depth direction in the actual ocean, the numerical calculation model for the ISW and the submarine in the stratified fluid is established based on the Korteweg de Vres (KdV) theory and the RANS method. The load characteristics of the ISW on the submarine are studied by using the overset mesh technology and the VOF method. When the submarine passes through the ISW, the change of its buoyancy will cause a sharp change in the vertical load. The ISW-induced flow field will also affect the force on the submarine. The ISW-induced forces increase with the increase of the ISW amplitudes. When the submarine is completely below the peak of the waveform, the load is mainly affected by the flow field structure; the force amplitude is small, and the impact of the submergence depth is small.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.09.002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.09.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
内孤立波经常出现在实际海洋中,并携带着巨大的能量。为了研究ISW与水下物体之间的相互作用,考虑实际海洋中流体密度沿深度方向的变化规律,基于Korteweg de Vres (KdV)理论和RANS方法建立了分层流体中ISW与潜艇的数值计算模型。采用叠置网格技术和VOF方法研究了潜艇上ISW的载荷特性。当潜艇通过ISW时,其浮力的变化会引起垂直载荷的急剧变化。isw诱导的流场也会影响对潜艇的作用力。ISW诱导力随ISW振幅的增大而增大。当潜艇完全处于波形峰值以下时,载荷主要受流场结构的影响;力幅值较小,受淹没深度的影响较小。
Numerical investigation of load characteristics by internal solitary wave on submarines in fluids with continuous density change
Internal solitary waves (ISW) often appear in the actual ocean and carry huge energy. In order to study the interaction between the ISW and the underwater objects, considering the variation law of the fluid density along the depth direction in the actual ocean, the numerical calculation model for the ISW and the submarine in the stratified fluid is established based on the Korteweg de Vres (KdV) theory and the RANS method. The load characteristics of the ISW on the submarine are studied by using the overset mesh technology and the VOF method. When the submarine passes through the ISW, the change of its buoyancy will cause a sharp change in the vertical load. The ISW-induced flow field will also affect the force on the submarine. The ISW-induced forces increase with the increase of the ISW amplitudes. When the submarine is completely below the peak of the waveform, the load is mainly affected by the flow field structure; the force amplitude is small, and the impact of the submergence depth is small.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.