{"title":"不同密封结构涡轮轮缘密封性能的数值研究","authors":"T. Bai, Q. Yang, J. Liu, Y. Shi, S. Qiao","doi":"10.23967/j.rimni.2022.09.003","DOIUrl":null,"url":null,"abstract":"The unsteady large-scale vortex near the turbine rim has an important influence on the sealing performance. Characteristics and performance of four sealing structures are researched in this paper. Three-dimensional unsteady numerical simulation was adopted to deeply reveal the characteristics of the rim sealing vortex and its influence mechanism on the rim sealing performance. The results show that the rim seal vortex structure induced by the interaction between ingested gas and sealing flow in the gap is the leading cause of unsteady flow in the rim. The vortex size is suppressed with the increasing seal flow rate or a Chute seal structure. However, the rim seal vortex exit in the cavity gap under a low seal flow rate can suppress the gas intrusion and improve the sealing efficiency of the turbine cavity even with a simple sealing structure. The Chute sealing structure achieves better performance among the four sealing structures studied in this paper. It can achieve complete sealing under a low sealing flow rate of 0.5% and has less impact on the aerodynamic performance of the mainstream even with high sealing flow rate. The research of this paper has guiding significance for further understanding the sealing mechanism and optimizing the design of the sealing structures.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical study of turbine rim seals performance with different sealing structures\",\"authors\":\"T. Bai, Q. Yang, J. Liu, Y. Shi, S. Qiao\",\"doi\":\"10.23967/j.rimni.2022.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsteady large-scale vortex near the turbine rim has an important influence on the sealing performance. Characteristics and performance of four sealing structures are researched in this paper. Three-dimensional unsteady numerical simulation was adopted to deeply reveal the characteristics of the rim sealing vortex and its influence mechanism on the rim sealing performance. The results show that the rim seal vortex structure induced by the interaction between ingested gas and sealing flow in the gap is the leading cause of unsteady flow in the rim. The vortex size is suppressed with the increasing seal flow rate or a Chute seal structure. However, the rim seal vortex exit in the cavity gap under a low seal flow rate can suppress the gas intrusion and improve the sealing efficiency of the turbine cavity even with a simple sealing structure. The Chute sealing structure achieves better performance among the four sealing structures studied in this paper. It can achieve complete sealing under a low sealing flow rate of 0.5% and has less impact on the aerodynamic performance of the mainstream even with high sealing flow rate. The research of this paper has guiding significance for further understanding the sealing mechanism and optimizing the design of the sealing structures.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.09.003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.09.003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical study of turbine rim seals performance with different sealing structures
The unsteady large-scale vortex near the turbine rim has an important influence on the sealing performance. Characteristics and performance of four sealing structures are researched in this paper. Three-dimensional unsteady numerical simulation was adopted to deeply reveal the characteristics of the rim sealing vortex and its influence mechanism on the rim sealing performance. The results show that the rim seal vortex structure induced by the interaction between ingested gas and sealing flow in the gap is the leading cause of unsteady flow in the rim. The vortex size is suppressed with the increasing seal flow rate or a Chute seal structure. However, the rim seal vortex exit in the cavity gap under a low seal flow rate can suppress the gas intrusion and improve the sealing efficiency of the turbine cavity even with a simple sealing structure. The Chute sealing structure achieves better performance among the four sealing structures studied in this paper. It can achieve complete sealing under a low sealing flow rate of 0.5% and has less impact on the aerodynamic performance of the mainstream even with high sealing flow rate. The research of this paper has guiding significance for further understanding the sealing mechanism and optimizing the design of the sealing structures.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.