混凝土建筑物地震破坏的成本评估

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2022-01-01 DOI:10.23967/j.rimni.2022.09.005
C. Castillo-Castillo, J. Valdés-González, F. Bañuelos-García
{"title":"混凝土建筑物地震破坏的成本评估","authors":"C. Castillo-Castillo, J. Valdés-González, F. Bañuelos-García","doi":"10.23967/j.rimni.2022.09.005","DOIUrl":null,"url":null,"abstract":"The study of earthquakes losses in buildings has traditionally been approached for a single amplification factor of the design spectrum, but it could be useful to use other amplification factors to reduce costs. This paper analyzes the evolution of seismic damage costs in three models based on the performance level achieved by these structures, as well as the amplification factor of the design spectrum. Three nonlinear analytical models of reinforced concrete were analyzed. Each model differs in dynamic characteristics and was designed by scaling the design spectrum for three amplification factors. A firm soil earthquake was analyzed, which was scaled to 22 intensities and with this results, dynamic capacity curves of the studied models were constructed. From the analyses it was obtained interstory drift and maximum accelerations, with which the following seismic damage costs were estimated: structural and non-structural damage, contents replacement, income and profits, injuries and deaths. The results show different types of relations between intensity and each type of loss. They also justify the importance of introducing amplification factors at the design stage to minimize the cost of a particular type of damage.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost evaluations due to seismic damage to concrete buildings\",\"authors\":\"C. Castillo-Castillo, J. Valdés-González, F. Bañuelos-García\",\"doi\":\"10.23967/j.rimni.2022.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of earthquakes losses in buildings has traditionally been approached for a single amplification factor of the design spectrum, but it could be useful to use other amplification factors to reduce costs. This paper analyzes the evolution of seismic damage costs in three models based on the performance level achieved by these structures, as well as the amplification factor of the design spectrum. Three nonlinear analytical models of reinforced concrete were analyzed. Each model differs in dynamic characteristics and was designed by scaling the design spectrum for three amplification factors. A firm soil earthquake was analyzed, which was scaled to 22 intensities and with this results, dynamic capacity curves of the studied models were constructed. From the analyses it was obtained interstory drift and maximum accelerations, with which the following seismic damage costs were estimated: structural and non-structural damage, contents replacement, income and profits, injuries and deaths. The results show different types of relations between intensity and each type of loss. They also justify the importance of introducing amplification factors at the design stage to minimize the cost of a particular type of damage.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.09.005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.09.005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,建筑物地震损失的研究是针对设计谱的单一放大因子进行的,但使用其他放大因子来降低成本可能是有用的。根据结构的性能水平和设计谱的放大系数,分析了三种模型的震害成本演变。对钢筋混凝土的三种非线性分析模型进行了分析。每个模型的动态特性不同,并通过缩放三个放大因子的设计谱来设计。以22烈度的刚土地震为例进行分析,建立了模型的动态承载力曲线。从分析中获得了层间位移和最大加速度,并据此估计了下列地震破坏费用:结构和非结构破坏、内容物更换、收入和利润、伤害和死亡。结果表明,不同类型的损失与强度之间存在不同的关系。它们还证明了在设计阶段引入放大因子以最小化特定类型损坏成本的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost evaluations due to seismic damage to concrete buildings
The study of earthquakes losses in buildings has traditionally been approached for a single amplification factor of the design spectrum, but it could be useful to use other amplification factors to reduce costs. This paper analyzes the evolution of seismic damage costs in three models based on the performance level achieved by these structures, as well as the amplification factor of the design spectrum. Three nonlinear analytical models of reinforced concrete were analyzed. Each model differs in dynamic characteristics and was designed by scaling the design spectrum for three amplification factors. A firm soil earthquake was analyzed, which was scaled to 22 intensities and with this results, dynamic capacity curves of the studied models were constructed. From the analyses it was obtained interstory drift and maximum accelerations, with which the following seismic damage costs were estimated: structural and non-structural damage, contents replacement, income and profits, injuries and deaths. The results show different types of relations between intensity and each type of loss. They also justify the importance of introducing amplification factors at the design stage to minimize the cost of a particular type of damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1