滑动式双层注水分布器结构设计及性能分析

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2022-01-01 DOI:10.23967/j.rimni.2022.11.002
X. Zhou, H. Fang, Z. Zhao, X. Zhang, X. Ji
{"title":"滑动式双层注水分布器结构设计及性能分析","authors":"X. Zhou, H. Fang, Z. Zhao, X. Zhang, X. Ji","doi":"10.23967/j.rimni.2022.11.002","DOIUrl":null,"url":null,"abstract":"Taking the double-layer water injection well and one graded water distributor could regulate two layers as the design and research goal, the sliding double-layer water injection distributor was designed by using the forward and reverse rotation of the driving motor to control the opening and closing of the two nozzles. The flow field of the two flow channels under different opening was analyzed by FLUENT software. The research shows that when the opening of the nozzle was less than 10mm, the maximum flow rate decreases rapidly, and when the opening exceeds 10mm, it decreases slowly. The mathematical models of flow pressure, flow velocity, and nozzle opening were obtained by data analysis and fitting. Finally, the kinematics simulation was carried out by AAMS, and the maximum friction force borne by each sealing in the movement process was obtained. The maximum torque borne in the movement process was 120.5N·m, which was less than the rated torque. The supporting motor could meet the design requirements.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural design and performance analysis of sliding double-layer water injection distributor\",\"authors\":\"X. Zhou, H. Fang, Z. Zhao, X. Zhang, X. Ji\",\"doi\":\"10.23967/j.rimni.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking the double-layer water injection well and one graded water distributor could regulate two layers as the design and research goal, the sliding double-layer water injection distributor was designed by using the forward and reverse rotation of the driving motor to control the opening and closing of the two nozzles. The flow field of the two flow channels under different opening was analyzed by FLUENT software. The research shows that when the opening of the nozzle was less than 10mm, the maximum flow rate decreases rapidly, and when the opening exceeds 10mm, it decreases slowly. The mathematical models of flow pressure, flow velocity, and nozzle opening were obtained by data analysis and fitting. Finally, the kinematics simulation was carried out by AAMS, and the maximum friction force borne by each sealing in the movement process was obtained. The maximum torque borne in the movement process was 120.5N·m, which was less than the rated torque. The supporting motor could meet the design requirements.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2022.11.002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.11.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以双层注水井和一个分级配水器可调节两层为设计研究目标,设计了滑动式双层注水配水器,利用驱动电机的正反转控制两个喷嘴的开闭。利用FLUENT软件对不同开度下两流道的流场进行了分析。研究表明,当喷嘴开度小于10mm时,最大流量迅速减小,当开度大于10mm时,最大流量减小缓慢。通过数据分析和拟合,得到了流量压力、流速和喷嘴开度的数学模型。最后,利用AAMS进行运动学仿真,得到各密封件在运动过程中所承受的最大摩擦力。运动过程中承受的最大扭矩为120.5N·m,小于额定扭矩。配套电机满足设计要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural design and performance analysis of sliding double-layer water injection distributor
Taking the double-layer water injection well and one graded water distributor could regulate two layers as the design and research goal, the sliding double-layer water injection distributor was designed by using the forward and reverse rotation of the driving motor to control the opening and closing of the two nozzles. The flow field of the two flow channels under different opening was analyzed by FLUENT software. The research shows that when the opening of the nozzle was less than 10mm, the maximum flow rate decreases rapidly, and when the opening exceeds 10mm, it decreases slowly. The mathematical models of flow pressure, flow velocity, and nozzle opening were obtained by data analysis and fitting. Finally, the kinematics simulation was carried out by AAMS, and the maximum friction force borne by each sealing in the movement process was obtained. The maximum torque borne in the movement process was 120.5N·m, which was less than the rated torque. The supporting motor could meet the design requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1