基于颗粒介质的薄壁弯头管推弯过程的改进FEM-DEM耦合模拟

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria Pub Date : 2023-01-01 DOI:10.23967/j.rimni.2023.05.005
H. Liu, G. M, Z. Geng
{"title":"基于颗粒介质的薄壁弯头管推弯过程的改进FEM-DEM耦合模拟","authors":"H. Liu, G. M, Z. Geng","doi":"10.23967/j.rimni.2023.05.005","DOIUrl":null,"url":null,"abstract":"The granular-media-based push-bending process has been developed to manufacture thin-wall elbow tube with t/D≤0.01 (the ratio of wall thickness to outer diameter) and R/D≤1.5 (the ratio of bending radius to outer diameter). In the process, a tubular blank is filled with granular media and then pushed into a die to form an elbow shape. To investigate the process, a FEM-DEM coupling model has been developed, in which FEM is used to simulate bending deformation of tubular blank, and DEM is used to calculate contact forces between spherical particles in granular media. In this work, an improved numerical formulation is proposed in order to reach mechanical equilibrium quickly and accelerate the convergence of DEM simulation, when the new contacts are no longer created and the old contacts are no longer deleted in granular media. Using the proposed numerical formulation, the improved FEM-DEM coupling simulation for granular-media-based thin-wall elbow tube push-bending process is less time-consuming than before under the same simulation condition.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved FEM-DEM coupling simulation for granular-media-based thin-wall elbow tube push-bending process\",\"authors\":\"H. Liu, G. M, Z. Geng\",\"doi\":\"10.23967/j.rimni.2023.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The granular-media-based push-bending process has been developed to manufacture thin-wall elbow tube with t/D≤0.01 (the ratio of wall thickness to outer diameter) and R/D≤1.5 (the ratio of bending radius to outer diameter). In the process, a tubular blank is filled with granular media and then pushed into a die to form an elbow shape. To investigate the process, a FEM-DEM coupling model has been developed, in which FEM is used to simulate bending deformation of tubular blank, and DEM is used to calculate contact forces between spherical particles in granular media. In this work, an improved numerical formulation is proposed in order to reach mechanical equilibrium quickly and accelerate the convergence of DEM simulation, when the new contacts are no longer created and the old contacts are no longer deleted in granular media. Using the proposed numerical formulation, the improved FEM-DEM coupling simulation for granular-media-based thin-wall elbow tube push-bending process is less time-consuming than before under the same simulation condition.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2023.05.005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.05.005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发了基于颗粒介质的推弯工艺,用于制造t/D≤0.01(壁厚与外径之比)、R/D≤1.5(弯曲半径与外径之比)的薄壁弯头管。在此过程中,管状坯料被填充颗粒状介质,然后推入模具,形成弯头形状。为了研究这一过程,建立了一种FEM-DEM耦合模型,利用FEM模拟管状坯料的弯曲变形,利用DEM计算颗粒介质中球形颗粒之间的接触力。本文提出了一种改进的数值公式,以便在颗粒介质中不再创建新接触和不再删除旧接触时快速达到力学平衡并加速DEM模拟的收敛。在相同的模拟条件下,基于颗粒介质的薄壁弯头管推弯过程的改进FEM-DEM耦合模拟比以前节省了时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved FEM-DEM coupling simulation for granular-media-based thin-wall elbow tube push-bending process
The granular-media-based push-bending process has been developed to manufacture thin-wall elbow tube with t/D≤0.01 (the ratio of wall thickness to outer diameter) and R/D≤1.5 (the ratio of bending radius to outer diameter). In the process, a tubular blank is filled with granular media and then pushed into a die to form an elbow shape. To investigate the process, a FEM-DEM coupling model has been developed, in which FEM is used to simulate bending deformation of tubular blank, and DEM is used to calculate contact forces between spherical particles in granular media. In this work, an improved numerical formulation is proposed in order to reach mechanical equilibrium quickly and accelerate the convergence of DEM simulation, when the new contacts are no longer created and the old contacts are no longer deleted in granular media. Using the proposed numerical formulation, the improved FEM-DEM coupling simulation for granular-media-based thin-wall elbow tube push-bending process is less time-consuming than before under the same simulation condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
期刊最新文献
Bearing life prediction based on critical interface method under multiaxial random loading Construction monitoring and finite element simulation of assembly support for large cantilever cover beam Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot A BP neural network-based micro particle parameters calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope stability Parallel computing for reducing time in security constrained optimal power flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1