适应异质环境的动态觅食策略有助于金丝猴的社会聚集。

IF 4 1区 生物学 Q1 ZOOLOGY Zoological Research Pub Date : 2024-01-18 DOI:10.24272/j.issn.2095-8137.2023.047
Lan Zhao, Sheng-Nan Ji, Xiao-Bing Du, Jia-Hui Liu, Bo-Lun Zhang, Pei-Hua Li, Yi-Jun Yang, Bao-Guo Li, Yan-Qing Guo, Xiao-Guang Qi
{"title":"适应异质环境的动态觅食策略有助于金丝猴的社会聚集。","authors":"Lan Zhao, Sheng-Nan Ji, Xiao-Bing Du, Jia-Hui Liu, Bo-Lun Zhang, Pei-Hua Li, Yi-Jun Yang, Bao-Guo Li, Yan-Qing Guo, Xiao-Guang Qi","doi":"10.24272/j.issn.2095-8137.2023.047","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of animal social structures are heavily influenced by environmental patterns of competition and cooperation. In folivorous colobine primates, prevailing theories suggest that larger group sizes should be favored in rainforests with a year-round abundance of food, thereby reducing feeding competition. Yet, paradoxically, larger groups are frequently found in high-altitude or high-latitude montane ecosystems characterized by a seasonal scarcity of leaves. This contradiction is posited to arise from cooperative benefits in heterogeneous environments. To investigate this hypothesis, we carried out a six-year field study on two neighboring groups of golden snub-nosed monkey ( <i>Rhinopithecus roxellana</i>), a species representing the northernmost distribution of colobine primates. Results showed that the groups adjusted their movement and habitat selection in response to fluctuating climates and spatiotemporal variability of resources, indicative of a dynamic foraging strategy. Notably, during the cold, resource-scarce conditions in winter, the large group occupied food-rich habitats but did not exhibit significantly longer daily travel distances than the smaller neighboring group. Subsequently, we compiled an eco-behavioral dataset of 52 colobine species to explore their evolutionary trajectories. Analysis of this dataset suggested that the increase in group size may have evolved via home range expansion in response to the cold and heterogeneous climates found at higher altitudes or latitudes. Hence, we developed a multi-benefits framework to interpret the formation of larger groups by integrating environmental heterogeneity. In cold and diverse environments, even smaller groups require larger home ranges to meet their dynamic survival needs. The spatiotemporal distribution of high-quality resources within these expanded home ranges facilitates more frequent interactions between groups, thereby encouraging social aggregation into larger groups. This process enhances the benefits of collaborative actions and reproductive opportunities, while simultaneously optimizing travel costs through a dynamic foraging strategy.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"1 1","pages":"39-54"},"PeriodicalIF":4.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic foraging strategy adaptation to heterogeneous environments contributes to social aggregation in snub-nosed monkeys.\",\"authors\":\"Lan Zhao, Sheng-Nan Ji, Xiao-Bing Du, Jia-Hui Liu, Bo-Lun Zhang, Pei-Hua Li, Yi-Jun Yang, Bao-Guo Li, Yan-Qing Guo, Xiao-Guang Qi\",\"doi\":\"10.24272/j.issn.2095-8137.2023.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamics of animal social structures are heavily influenced by environmental patterns of competition and cooperation. In folivorous colobine primates, prevailing theories suggest that larger group sizes should be favored in rainforests with a year-round abundance of food, thereby reducing feeding competition. Yet, paradoxically, larger groups are frequently found in high-altitude or high-latitude montane ecosystems characterized by a seasonal scarcity of leaves. This contradiction is posited to arise from cooperative benefits in heterogeneous environments. To investigate this hypothesis, we carried out a six-year field study on two neighboring groups of golden snub-nosed monkey ( <i>Rhinopithecus roxellana</i>), a species representing the northernmost distribution of colobine primates. Results showed that the groups adjusted their movement and habitat selection in response to fluctuating climates and spatiotemporal variability of resources, indicative of a dynamic foraging strategy. Notably, during the cold, resource-scarce conditions in winter, the large group occupied food-rich habitats but did not exhibit significantly longer daily travel distances than the smaller neighboring group. Subsequently, we compiled an eco-behavioral dataset of 52 colobine species to explore their evolutionary trajectories. Analysis of this dataset suggested that the increase in group size may have evolved via home range expansion in response to the cold and heterogeneous climates found at higher altitudes or latitudes. Hence, we developed a multi-benefits framework to interpret the formation of larger groups by integrating environmental heterogeneity. In cold and diverse environments, even smaller groups require larger home ranges to meet their dynamic survival needs. The spatiotemporal distribution of high-quality resources within these expanded home ranges facilitates more frequent interactions between groups, thereby encouraging social aggregation into larger groups. This process enhances the benefits of collaborative actions and reproductive opportunities, while simultaneously optimizing travel costs through a dynamic foraging strategy.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"1 1\",\"pages\":\"39-54\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2023.047\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2023.047","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动物社会结构的动态在很大程度上受到环境中竞争与合作模式的影响。在食叶疣猴科灵长类动物中,流行的理论认为,在终年食物丰富的热带雨林中,应倾向于较大的群体规模,从而减少觅食竞争。然而,矛盾的是,在高海拔或高纬度的高山生态系统中,却经常出现较大的群体,其特点是树叶季节性稀缺。这种矛盾被认为是异质环境中的合作效益造成的。为了研究这一假设,我们对两个相邻的金丝猴群进行了长达六年的野外研究。研究结果表明,这两个猴群会根据气候的波动和资源的时空变化调整它们的活动和栖息地选择,这表明它们采取了动态觅食策略。值得注意的是,在冬季寒冷、资源匮乏的条件下,大群占据了食物丰富的栖息地,但每天的旅行距离并没有明显长于邻近的小群。随后,我们编制了一个包含52种疣猴的生态行为数据集,以探索它们的进化轨迹。对该数据集的分析表明,群体规模的扩大可能是通过扩大家园范围来应对高海拔或高纬度地区的寒冷和异质气候。因此,我们建立了一个多效益框架,通过整合环境异质性来解释更大群体的形成。在寒冷和多样化的环境中,即使较小的群体也需要较大的家园范围来满足其动态生存需求。在这些扩大的家园范围内,优质资源的时空分布有利于群体之间更频繁的互动,从而鼓励社会聚集成更大的群体。这一过程提高了协作行动的效益和繁殖机会,同时通过动态觅食策略优化了旅行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic foraging strategy adaptation to heterogeneous environments contributes to social aggregation in snub-nosed monkeys.

The dynamics of animal social structures are heavily influenced by environmental patterns of competition and cooperation. In folivorous colobine primates, prevailing theories suggest that larger group sizes should be favored in rainforests with a year-round abundance of food, thereby reducing feeding competition. Yet, paradoxically, larger groups are frequently found in high-altitude or high-latitude montane ecosystems characterized by a seasonal scarcity of leaves. This contradiction is posited to arise from cooperative benefits in heterogeneous environments. To investigate this hypothesis, we carried out a six-year field study on two neighboring groups of golden snub-nosed monkey ( Rhinopithecus roxellana), a species representing the northernmost distribution of colobine primates. Results showed that the groups adjusted their movement and habitat selection in response to fluctuating climates and spatiotemporal variability of resources, indicative of a dynamic foraging strategy. Notably, during the cold, resource-scarce conditions in winter, the large group occupied food-rich habitats but did not exhibit significantly longer daily travel distances than the smaller neighboring group. Subsequently, we compiled an eco-behavioral dataset of 52 colobine species to explore their evolutionary trajectories. Analysis of this dataset suggested that the increase in group size may have evolved via home range expansion in response to the cold and heterogeneous climates found at higher altitudes or latitudes. Hence, we developed a multi-benefits framework to interpret the formation of larger groups by integrating environmental heterogeneity. In cold and diverse environments, even smaller groups require larger home ranges to meet their dynamic survival needs. The spatiotemporal distribution of high-quality resources within these expanded home ranges facilitates more frequent interactions between groups, thereby encouraging social aggregation into larger groups. This process enhances the benefits of collaborative actions and reproductive opportunities, while simultaneously optimizing travel costs through a dynamic foraging strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
期刊最新文献
IDH2 and GLUD1 depletion arrests embryonic development through an H4K20me3 epigenetic barrier in porcine parthenogenetic embryos. Pancreatic agenesis and altered m6A methylation in the pancreas of PDX1-mutant cynomolgus macaques. Convergent evolution in high-altitude and marine mammals: Molecular adaptations to pulmonary fibrosis and hypoxia. Maternal sleep deprivation disrupts glutamate metabolism in offspring rats. Nature's disguise: Empirical demonstration of dead-leaf masquerade in Kallima butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1