甲烷共发酵后发酵的能源利用

J. Sikora, M. Niemiec, A. Szeląg-Sikora, M. Cupiał, A. Klimas
{"title":"甲烷共发酵后发酵的能源利用","authors":"J. Sikora, M. Niemiec, A. Szeląg-Sikora, M. Cupiał, A. Klimas","doi":"10.2428/ECEA.2016.23(2)17","DOIUrl":null,"url":null,"abstract":"The main civilization issue of the 21 century is a rapid increase of the waste and pollution amount which influences the natural environment degradation. As early as in the 20 century, the increase in the amount of municipal waste and waste from agri-food industry was reported. Waste chemical composition gives optimal conditions for the development of microorganisms. Under aerobic and non-aerobic conditions bacteria decompose organic compounds which results in gases emission (CH4, H2S, CO2, NOx), while nitrogen, phosphorus and potassium compounds remain in the post-ferment. These compounds may be diffused into the environment and create a risk of homeostasis corruption. Biogenic elements are transferred to surface water and corrupt the ecosystem balance causing its eutrophication. Various types of fermentation may be distinguished, but the methane fermentation may play a special role with regard to the sustainable energy sources and waste management. This process converts energy included in the biomass into the utility fuel – a source of clean sustainable energy which does not negatively influence the environment. Biogas may be combusted in the boiler in order to obtain thermal energy used for heating rooms or in a gas engine which drives the current generator. It is worth noticing that the above method is a desired one of transforming waste ie organic recycling. The research results of biogas production from the organic fraction of municipal waste in co-fermentation with the agricultural mass as well as the suitability of the post-ferment for energy purposes were presented in the paper. In order to image the calorific value of the post-ferment, the tests were carried out on 6 batch mixes where in each one the organic fraction of municipal waste occurred.","PeriodicalId":44472,"journal":{"name":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utilization of Post-Ferment from Co-Fermentation Methane for Energy Purposes\",\"authors\":\"J. Sikora, M. Niemiec, A. Szeląg-Sikora, M. Cupiał, A. Klimas\",\"doi\":\"10.2428/ECEA.2016.23(2)17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main civilization issue of the 21 century is a rapid increase of the waste and pollution amount which influences the natural environment degradation. As early as in the 20 century, the increase in the amount of municipal waste and waste from agri-food industry was reported. Waste chemical composition gives optimal conditions for the development of microorganisms. Under aerobic and non-aerobic conditions bacteria decompose organic compounds which results in gases emission (CH4, H2S, CO2, NOx), while nitrogen, phosphorus and potassium compounds remain in the post-ferment. These compounds may be diffused into the environment and create a risk of homeostasis corruption. Biogenic elements are transferred to surface water and corrupt the ecosystem balance causing its eutrophication. Various types of fermentation may be distinguished, but the methane fermentation may play a special role with regard to the sustainable energy sources and waste management. This process converts energy included in the biomass into the utility fuel – a source of clean sustainable energy which does not negatively influence the environment. Biogas may be combusted in the boiler in order to obtain thermal energy used for heating rooms or in a gas engine which drives the current generator. It is worth noticing that the above method is a desired one of transforming waste ie organic recycling. The research results of biogas production from the organic fraction of municipal waste in co-fermentation with the agricultural mass as well as the suitability of the post-ferment for energy purposes were presented in the paper. In order to image the calorific value of the post-ferment, the tests were carried out on 6 batch mixes where in each one the organic fraction of municipal waste occurred.\",\"PeriodicalId\":44472,\"journal\":{\"name\":\"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2428/ECEA.2016.23(2)17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2428/ECEA.2016.23(2)17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

21世纪的主要文明问题是废弃物和污染量的迅速增加,造成了自然环境的退化。早在20世纪,就报道了城市垃圾和农业食品工业垃圾数量的增加。废物的化学成分为微生物的生长提供了最佳条件。在好氧和非好氧条件下,细菌分解有机物,产生气体(CH4, H2S, CO2, NOx),而氮,磷和钾化合物留在发酵后。这些化合物可能会扩散到环境中,造成体内平衡被破坏的危险。生物源元素被转移到地表水中,破坏了生态系统的平衡,导致其富营养化。发酵的类型可以区分,但甲烷发酵可能在可持续能源和废物管理方面发挥特殊作用。这一过程将生物质中的能量转化为公用事业燃料,这是一种不会对环境产生负面影响的清洁可持续能源。沼气可以在锅炉中燃烧以获得用于加热房间的热能,也可以在驱动电流发电机的燃气发动机中燃烧。值得注意的是,上述方法是废物转化即有机回收的理想方法。本文介绍了城市垃圾有机组分与农业废弃物共发酵产沼气的研究结果,以及后发酵作为能源利用的适宜性。为了对发酵后的热值进行成像,对6批混合物进行了测试,其中每批混合物中都含有城市垃圾的有机部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of Post-Ferment from Co-Fermentation Methane for Energy Purposes
The main civilization issue of the 21 century is a rapid increase of the waste and pollution amount which influences the natural environment degradation. As early as in the 20 century, the increase in the amount of municipal waste and waste from agri-food industry was reported. Waste chemical composition gives optimal conditions for the development of microorganisms. Under aerobic and non-aerobic conditions bacteria decompose organic compounds which results in gases emission (CH4, H2S, CO2, NOx), while nitrogen, phosphorus and potassium compounds remain in the post-ferment. These compounds may be diffused into the environment and create a risk of homeostasis corruption. Biogenic elements are transferred to surface water and corrupt the ecosystem balance causing its eutrophication. Various types of fermentation may be distinguished, but the methane fermentation may play a special role with regard to the sustainable energy sources and waste management. This process converts energy included in the biomass into the utility fuel – a source of clean sustainable energy which does not negatively influence the environment. Biogas may be combusted in the boiler in order to obtain thermal energy used for heating rooms or in a gas engine which drives the current generator. It is worth noticing that the above method is a desired one of transforming waste ie organic recycling. The research results of biogas production from the organic fraction of municipal waste in co-fermentation with the agricultural mass as well as the suitability of the post-ferment for energy purposes were presented in the paper. In order to image the calorific value of the post-ferment, the tests were carried out on 6 batch mixes where in each one the organic fraction of municipal waste occurred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The variability of the atmospheric precipitation in the region of Wielka Laka dam reservoir Effects of electromagnetic fields on the quality of onion (Allium cepa l.) seeds Components of the smell of beer as enticing factor for invasive slugs Arion lusitanicus non-mabille Numerical simulation of benzene seepage through cracked compacted mineral liner of municipal waste landfill Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1