城市垃圾填埋场破碎压实矿物衬里苯渗流数值模拟

M. Widomski, A. Musz-Pomorska, W. Stepniewski, R. Horn
{"title":"城市垃圾填埋场破碎压实矿物衬里苯渗流数值模拟","authors":"M. Widomski, A. Musz-Pomorska, W. Stepniewski, R. Horn","doi":"10.2428/ECEA.2018.25(1)12","DOIUrl":null,"url":null,"abstract":": This paper contains the results of numerical simulation of benzene migration, pollutant typical for landfill leachate, through the bottom compacted clay liner of municipal waste landfill. The FEFLOW, DHI software was used in the numerical calculations for four tested clays of various plasticity, compacted according to PN-B-04481:1988 and ASTM D698-12e2 and subjected to three cycles of drying and rewetting. The plasticity of the tested clay materials was determined by standard methods and classified according to the Unified Soil Classification System, ASTM D2487-11. Saturated hydraulic conductivity of the tested compacted clays was determined by the laboratory falling head permeameters for compacted soils, with agreement to ASTM D5856-95. Saturated hydraulic conductivity of the tested substrates after three cycles of shrinkage and swelling was measured by the falling and constant head laboratory permeameter. The sand box and pressure chambers with ceramic plates were used to determine the water retention curve parameters in the range of 0–15 bar. The obtained results showed the influence of cyclic shrinkage and swelling of clays on leachate seepage, triggering benzene migration, through the cracked compacted bottom liner.","PeriodicalId":44472,"journal":{"name":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of benzene seepage through cracked compacted mineral liner of municipal waste landfill\",\"authors\":\"M. Widomski, A. Musz-Pomorska, W. Stepniewski, R. Horn\",\"doi\":\"10.2428/ECEA.2018.25(1)12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper contains the results of numerical simulation of benzene migration, pollutant typical for landfill leachate, through the bottom compacted clay liner of municipal waste landfill. The FEFLOW, DHI software was used in the numerical calculations for four tested clays of various plasticity, compacted according to PN-B-04481:1988 and ASTM D698-12e2 and subjected to three cycles of drying and rewetting. The plasticity of the tested clay materials was determined by standard methods and classified according to the Unified Soil Classification System, ASTM D2487-11. Saturated hydraulic conductivity of the tested compacted clays was determined by the laboratory falling head permeameters for compacted soils, with agreement to ASTM D5856-95. Saturated hydraulic conductivity of the tested substrates after three cycles of shrinkage and swelling was measured by the falling and constant head laboratory permeameter. The sand box and pressure chambers with ceramic plates were used to determine the water retention curve parameters in the range of 0–15 bar. The obtained results showed the influence of cyclic shrinkage and swelling of clays on leachate seepage, triggering benzene migration, through the cracked compacted bottom liner.\",\"PeriodicalId\":44472,\"journal\":{\"name\":\"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2428/ECEA.2018.25(1)12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2428/ECEA.2018.25(1)12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了垃圾渗滤液中典型污染物苯通过城市垃圾填埋场底压实粘土衬里迁移的数值模拟结果。采用FEFLOW, DHI软件对4种不同塑性的试验粘土进行数值计算,根据PN-B-04481:1988和ASTM D698-12e2进行压实,并进行3次干燥和再湿循环。试验粘土材料的塑性采用标准方法测定,并按ASTM D2487-11统一土壤分类系统进行分类。所测试的压实粘土的饱和水力导电性由实验室压实土壤的降头渗透仪测定,符合ASTM D5856-95。试验基质经过3个收缩和膨胀循环后的饱和水导率通过下降和恒定头部实验室渗透率仪测量。采用砂箱和陶瓷板压力室测定了0 ~ 15 bar范围内的保水曲线参数。研究结果表明,粘土的循环收缩和膨胀对渗滤液渗流有影响,引发苯通过破裂的压实衬底迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of benzene seepage through cracked compacted mineral liner of municipal waste landfill
: This paper contains the results of numerical simulation of benzene migration, pollutant typical for landfill leachate, through the bottom compacted clay liner of municipal waste landfill. The FEFLOW, DHI software was used in the numerical calculations for four tested clays of various plasticity, compacted according to PN-B-04481:1988 and ASTM D698-12e2 and subjected to three cycles of drying and rewetting. The plasticity of the tested clay materials was determined by standard methods and classified according to the Unified Soil Classification System, ASTM D2487-11. Saturated hydraulic conductivity of the tested compacted clays was determined by the laboratory falling head permeameters for compacted soils, with agreement to ASTM D5856-95. Saturated hydraulic conductivity of the tested substrates after three cycles of shrinkage and swelling was measured by the falling and constant head laboratory permeameter. The sand box and pressure chambers with ceramic plates were used to determine the water retention curve parameters in the range of 0–15 bar. The obtained results showed the influence of cyclic shrinkage and swelling of clays on leachate seepage, triggering benzene migration, through the cracked compacted bottom liner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The variability of the atmospheric precipitation in the region of Wielka Laka dam reservoir Effects of electromagnetic fields on the quality of onion (Allium cepa l.) seeds Components of the smell of beer as enticing factor for invasive slugs Arion lusitanicus non-mabille Numerical simulation of benzene seepage through cracked compacted mineral liner of municipal waste landfill Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1