风险投资组合估计价值使用蒙特卡洛速记法与霍尔顿随机数字发生器

Putu Savitri Devi, K. Dharmawan, L. Harini
{"title":"风险投资组合估计价值使用蒙特卡洛速记法与霍尔顿随机数字发生器","authors":"Putu Savitri Devi, K. Dharmawan, L. Harini","doi":"10.24843/mtk.2022.v11.i02.p371","DOIUrl":null,"url":null,"abstract":"Estimating the value at risk (VaR) is an important aspect of investment. VaR is a standard method of measuring risk defined as the maximum loss over a certain period of time at a certain level of confidence. The purpose of this study is to estimate the risk of a portfolio represented as a VaR where the volatilities were simulated by th the Monte Carlo and Quasi Monte Carlo methods. The Monte Carlo method involves generating random numbers and the Quasi Monte Carlo method uses Halton's quasi-random sequences. This study uses secondary data, namely daily stock price closing data. Based on the calculation, the VaR of the Quasi Monte Carlo Portfolio produces a maximum loss greater than that of the Monte Carlo Portfolio. This is due to randomization performed with different random number generators for each method and the number of simulations performed. It can be concluded that the Quasi Monte Carlo method is a better method than the Monte Carlo method in estimating the risk of portfolio losses in stocks in the telecommunications sector.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMASI VALUE AT RISK PORTOFOLIO MENGGUNAKAN METODE QUASI MONTE CARLO DENGAN PEMBANGKIT BILANGAN ACAK HALTON\",\"authors\":\"Putu Savitri Devi, K. Dharmawan, L. Harini\",\"doi\":\"10.24843/mtk.2022.v11.i02.p371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the value at risk (VaR) is an important aspect of investment. VaR is a standard method of measuring risk defined as the maximum loss over a certain period of time at a certain level of confidence. The purpose of this study is to estimate the risk of a portfolio represented as a VaR where the volatilities were simulated by th the Monte Carlo and Quasi Monte Carlo methods. The Monte Carlo method involves generating random numbers and the Quasi Monte Carlo method uses Halton's quasi-random sequences. This study uses secondary data, namely daily stock price closing data. Based on the calculation, the VaR of the Quasi Monte Carlo Portfolio produces a maximum loss greater than that of the Monte Carlo Portfolio. This is due to randomization performed with different random number generators for each method and the number of simulations performed. It can be concluded that the Quasi Monte Carlo method is a better method than the Monte Carlo method in estimating the risk of portfolio losses in stocks in the telecommunications sector.\",\"PeriodicalId\":11600,\"journal\":{\"name\":\"E-Jurnal Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/mtk.2022.v11.i02.p371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i02.p371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估风险价值(VaR)是投资的一个重要方面。VaR是衡量风险的标准方法,定义为一定时期内在一定置信度下的最大损失。本研究的目的是估计一个投资组合的风险表示为VaR,其中波动性是由蒙特卡洛和拟蒙特卡洛方法模拟。蒙特卡罗方法涉及生成随机数,而拟蒙特卡罗方法使用哈尔顿的拟随机序列。本研究采用二级数据,即每日股价收盘数据。根据计算,拟蒙特卡罗投资组合的VaR产生的最大损失大于蒙特卡罗投资组合。这是由于每种方法使用不同的随机数生成器执行的随机化以及执行的模拟次数。结果表明,拟蒙特卡罗方法比蒙特卡罗方法更适合于电信行业股票投资组合损失风险的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESTIMASI VALUE AT RISK PORTOFOLIO MENGGUNAKAN METODE QUASI MONTE CARLO DENGAN PEMBANGKIT BILANGAN ACAK HALTON
Estimating the value at risk (VaR) is an important aspect of investment. VaR is a standard method of measuring risk defined as the maximum loss over a certain period of time at a certain level of confidence. The purpose of this study is to estimate the risk of a portfolio represented as a VaR where the volatilities were simulated by th the Monte Carlo and Quasi Monte Carlo methods. The Monte Carlo method involves generating random numbers and the Quasi Monte Carlo method uses Halton's quasi-random sequences. This study uses secondary data, namely daily stock price closing data. Based on the calculation, the VaR of the Quasi Monte Carlo Portfolio produces a maximum loss greater than that of the Monte Carlo Portfolio. This is due to randomization performed with different random number generators for each method and the number of simulations performed. It can be concluded that the Quasi Monte Carlo method is a better method than the Monte Carlo method in estimating the risk of portfolio losses in stocks in the telecommunications sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
期刊最新文献
The Potential Impact of Agouti Related Peptide and Asprosin on Metabolic Parameters and Eating Behavior in Attention Deficit Hyperactivity Disorder. PENGELOMPOKKAN KABUPATEN DI PROVINSI JAWA TENGAH BERDASARKAN KARAKTERISTIK IKLIM MENGGUNAKAN FUZZY CLUSTERING Perhitungan Premi Asuransi Menggunakan Model Select Table Pada Asuransi Joint Life PENERAPAN MODEL INVENTORI PROBABILISTIK FUZZY MULTIOBJEKTIF PADA SISTEM PERSEDIAAN BUAH SALAK KAUSALITAS ANTARA ANXIETY, SOCIAL PHOBIA TERHADAP PEMAIN VIDEO GAME
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1