黄瓜花叶病毒感染对蚜虫群体发育的影响

IF 0.7 Q3 AGRONOMY Journal of Plant Protection Research Pub Date : 2023-03-22 DOI:10.24425/jppr.2022.140302
{"title":"黄瓜花叶病毒感染对蚜虫群体发育的影响","authors":"","doi":"10.24425/jppr.2022.140302","DOIUrl":null,"url":null,"abstract":"Knowing the tritrophic interactions between plant-virus-insect is important in developing sustainable pest management practices. Myzus persicae is a well-known plant viral vector which can transmit over 40 plant viruses. We studied the impact of Cucumber mosaic virus (CMV) infection in Nicotiana tabacum on the colony development of M. persicae to understand how plant virus infection can affect vector growth and reproduction. Aphid growth, reproduction and fecundity were significantly affected by the virus infection. The mean relative growth rate of M. persicae on healthy plants was 0.29 mg –1 · mg –1 · day –1 and was significantly higher than that of CMV-infected plants (0.23 mg –1 · mg –1 · day –1 ). In contrast, the percentage of survival was significantly higher on CMV-infected plants. The estimated survival percentages of aphids at 20 days after introduction to CMV-infected and healthy plants were 55.8 and 25.8%, respectively. Therefore, the total population of aphids on CMV-infected plants was significantly higher on the 25th day after the introduction of aphids. The total population of aphids on the CMV-infected plants was 1,225 compared to that of healthy plants which was 713. Similarly, mean fecundity over a 30 day observation period was 61.25 and 35.65 for aphids grown on CMV-infected and healthy plants, respectively. Jasmonic acid (JA) upstream gene OPR3 and downstream gene COI1 was measured to quantify the changes in JA expression in the plants under the virus infection. Both genes tested were significantly downregulated in CMV-infected plants. From our results, it was evident that the JA related insect resistance was reduced in CMV-infected plants and hence aphid colony development was increased.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Cucumber mosaic virus infection on aphid colony development on aphid colony development\",\"authors\":\"\",\"doi\":\"10.24425/jppr.2022.140302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowing the tritrophic interactions between plant-virus-insect is important in developing sustainable pest management practices. Myzus persicae is a well-known plant viral vector which can transmit over 40 plant viruses. We studied the impact of Cucumber mosaic virus (CMV) infection in Nicotiana tabacum on the colony development of M. persicae to understand how plant virus infection can affect vector growth and reproduction. Aphid growth, reproduction and fecundity were significantly affected by the virus infection. The mean relative growth rate of M. persicae on healthy plants was 0.29 mg –1 · mg –1 · day –1 and was significantly higher than that of CMV-infected plants (0.23 mg –1 · mg –1 · day –1 ). In contrast, the percentage of survival was significantly higher on CMV-infected plants. The estimated survival percentages of aphids at 20 days after introduction to CMV-infected and healthy plants were 55.8 and 25.8%, respectively. Therefore, the total population of aphids on CMV-infected plants was significantly higher on the 25th day after the introduction of aphids. The total population of aphids on the CMV-infected plants was 1,225 compared to that of healthy plants which was 713. Similarly, mean fecundity over a 30 day observation period was 61.25 and 35.65 for aphids grown on CMV-infected and healthy plants, respectively. Jasmonic acid (JA) upstream gene OPR3 and downstream gene COI1 was measured to quantify the changes in JA expression in the plants under the virus infection. Both genes tested were significantly downregulated in CMV-infected plants. From our results, it was evident that the JA related insect resistance was reduced in CMV-infected plants and hence aphid colony development was increased.\",\"PeriodicalId\":16848,\"journal\":{\"name\":\"Journal of Plant Protection Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Protection Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/jppr.2022.140302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Protection Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jppr.2022.140302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Cucumber mosaic virus infection on aphid colony development on aphid colony development
Knowing the tritrophic interactions between plant-virus-insect is important in developing sustainable pest management practices. Myzus persicae is a well-known plant viral vector which can transmit over 40 plant viruses. We studied the impact of Cucumber mosaic virus (CMV) infection in Nicotiana tabacum on the colony development of M. persicae to understand how plant virus infection can affect vector growth and reproduction. Aphid growth, reproduction and fecundity were significantly affected by the virus infection. The mean relative growth rate of M. persicae on healthy plants was 0.29 mg –1 · mg –1 · day –1 and was significantly higher than that of CMV-infected plants (0.23 mg –1 · mg –1 · day –1 ). In contrast, the percentage of survival was significantly higher on CMV-infected plants. The estimated survival percentages of aphids at 20 days after introduction to CMV-infected and healthy plants were 55.8 and 25.8%, respectively. Therefore, the total population of aphids on CMV-infected plants was significantly higher on the 25th day after the introduction of aphids. The total population of aphids on the CMV-infected plants was 1,225 compared to that of healthy plants which was 713. Similarly, mean fecundity over a 30 day observation period was 61.25 and 35.65 for aphids grown on CMV-infected and healthy plants, respectively. Jasmonic acid (JA) upstream gene OPR3 and downstream gene COI1 was measured to quantify the changes in JA expression in the plants under the virus infection. Both genes tested were significantly downregulated in CMV-infected plants. From our results, it was evident that the JA related insect resistance was reduced in CMV-infected plants and hence aphid colony development was increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Protection Research
Journal of Plant Protection Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
9.10%
发文量
0
审稿时长
30 weeks
期刊最新文献
Removal of lead ions from aqueous solutions by modified cellulose. Female delayed mating and shortened pairing duration reduce the reproductive performance of tea mosquito bugs ( Helopeltis bradyi) Effects of water-based extracts of peppermint ( Mentha piperita L.) and French marigold (T agetes patula L.) on the transformation of larvae and nymphs of two-spotted spider mite ( Tetranychus urticae Koch) Interaction of endophytic fungi of winter wheat seeds Microencapsulation of Eucalyptus globulus essential oil anti-fungal sachet against blue mold on peaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1