开关磁阻电机磁化特性的频率几何辨识

L. Kadi, A. Brouri, A. Ouannou
{"title":"开关磁阻电机磁化特性的频率几何辨识","authors":"L. Kadi, A. Brouri, A. Ouannou","doi":"10.25728/ASSA.2020.20.4.839","DOIUrl":null,"url":null,"abstract":"Accurate modeling of electrical drives for online testing is a relevant problem. Switched Reluctance Machine (SRM) has lately attracted significant attention because it has several advantages compared to conventional engines. It is simple, free of rare-earth and fault-tolerant machine. An analytical model of a SRM has not been reported yet due to the dynamic and strong nonlinearity of SRM. The most SRM control and applications are based on several assumptions and simplifications. Therefore, it is convenient to develop an accurate approach to identify the SRM characteristics. In this paper, an analytical modeling and identification method of magnetization characteristics of Switched Reluctance Machine (SRM) is proposed. Presently, an exact mathematical model of SRM is established. Unlike several previous studies, in this approach the system nonlinearities of SRM are allowed to be hysteresis (i.e. the hysteresis effect is considered) and taking account the inherent magnetic nonlinearity. Indeed, the SRM is considered as highly nonlinear which makes the modeling of these machines difficult to achieve. Then, it is convenient to develop an accuracy model of SRM because it is always operated in the magnetically saturated mode to maximize the energy transfer. The developed model can be used in control, simulation and design development. Furthermore, an identification method, at standstill test, based on frequency technics is developed allowing the identification of SRM nonlinearities (considering the saturation and the hysteresis effects). In this respect, it is shown that the nonlinear behavior of SRM can be exactly described by a block-oriented nonlinear structure. Specifically, the SRM can be described by a Wiener nonlinear model. Compared to the existing methods, the proposed study gives good accuracy of flux-linkage value characteristics and enjoys the simplicity of implementation.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"11-26"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Frequency-Geometric Identification of Magnetization Characteristics of Switched Reluctance Machine\",\"authors\":\"L. Kadi, A. Brouri, A. Ouannou\",\"doi\":\"10.25728/ASSA.2020.20.4.839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate modeling of electrical drives for online testing is a relevant problem. Switched Reluctance Machine (SRM) has lately attracted significant attention because it has several advantages compared to conventional engines. It is simple, free of rare-earth and fault-tolerant machine. An analytical model of a SRM has not been reported yet due to the dynamic and strong nonlinearity of SRM. The most SRM control and applications are based on several assumptions and simplifications. Therefore, it is convenient to develop an accurate approach to identify the SRM characteristics. In this paper, an analytical modeling and identification method of magnetization characteristics of Switched Reluctance Machine (SRM) is proposed. Presently, an exact mathematical model of SRM is established. Unlike several previous studies, in this approach the system nonlinearities of SRM are allowed to be hysteresis (i.e. the hysteresis effect is considered) and taking account the inherent magnetic nonlinearity. Indeed, the SRM is considered as highly nonlinear which makes the modeling of these machines difficult to achieve. Then, it is convenient to develop an accuracy model of SRM because it is always operated in the magnetically saturated mode to maximize the energy transfer. The developed model can be used in control, simulation and design development. Furthermore, an identification method, at standstill test, based on frequency technics is developed allowing the identification of SRM nonlinearities (considering the saturation and the hysteresis effects). In this respect, it is shown that the nonlinear behavior of SRM can be exactly described by a block-oriented nonlinear structure. Specifically, the SRM can be described by a Wiener nonlinear model. Compared to the existing methods, the proposed study gives good accuracy of flux-linkage value characteristics and enjoys the simplicity of implementation.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"20 1\",\"pages\":\"11-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.4.839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.4.839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

电气传动系统在线测试的准确建模是一个相关问题。开关磁阻电机(SRM)与传统发动机相比具有许多优点,近年来备受关注。它是一种简单、不含稀土、容错的机器。由于SRM的动态性和强非线性,目前还没有关于SRM的解析模型的报道。大多数SRM控制和应用都是基于几个假设和简化。因此,开发一种准确的方法来识别SRM特性是很方便的。提出了一种开关磁阻电机(SRM)磁化特性的解析建模与辨识方法。目前,建立了精确的SRM数学模型。与以往的一些研究不同,该方法允许SRM的系统非线性为迟滞(即考虑迟滞效应),并考虑固有的磁非线性。事实上,SRM被认为是高度非线性的,这使得这些机器的建模很难实现。由于SRM始终工作在磁饱和模式下,以最大限度地实现能量传递,因此便于建立SRM的精度模型。所建立的模型可用于控制、仿真和设计开发。此外,提出了一种基于频率技术的静止状态试验识别方法,可以识别SRM非线性(考虑饱和和迟滞效应)。在这方面,证明了SRM的非线性行为可以用面向块的非线性结构来精确描述。具体来说,SRM可以用维纳非线性模型来描述。与现有方法相比,该方法具有较好的通量链值特征精度,且实现简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency-Geometric Identification of Magnetization Characteristics of Switched Reluctance Machine
Accurate modeling of electrical drives for online testing is a relevant problem. Switched Reluctance Machine (SRM) has lately attracted significant attention because it has several advantages compared to conventional engines. It is simple, free of rare-earth and fault-tolerant machine. An analytical model of a SRM has not been reported yet due to the dynamic and strong nonlinearity of SRM. The most SRM control and applications are based on several assumptions and simplifications. Therefore, it is convenient to develop an accurate approach to identify the SRM characteristics. In this paper, an analytical modeling and identification method of magnetization characteristics of Switched Reluctance Machine (SRM) is proposed. Presently, an exact mathematical model of SRM is established. Unlike several previous studies, in this approach the system nonlinearities of SRM are allowed to be hysteresis (i.e. the hysteresis effect is considered) and taking account the inherent magnetic nonlinearity. Indeed, the SRM is considered as highly nonlinear which makes the modeling of these machines difficult to achieve. Then, it is convenient to develop an accuracy model of SRM because it is always operated in the magnetically saturated mode to maximize the energy transfer. The developed model can be used in control, simulation and design development. Furthermore, an identification method, at standstill test, based on frequency technics is developed allowing the identification of SRM nonlinearities (considering the saturation and the hysteresis effects). In this respect, it is shown that the nonlinear behavior of SRM can be exactly described by a block-oriented nonlinear structure. Specifically, the SRM can be described by a Wiener nonlinear model. Compared to the existing methods, the proposed study gives good accuracy of flux-linkage value characteristics and enjoys the simplicity of implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
期刊最新文献
The Model of the Production Side of the Russian Economy Deep learning techniques for detection of covid-19 using chest x-rays Using Patent Landscapes for Technology Benchmarking: A Case of 5G Networks Achieving Angular Superresolution of Control and Measurement Systems in Signal Processing The Modular Inequalities for Hardy-type Operators on Monotone Functions in Orlicz Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1