模拟2019冠状病毒病对印度农产品供应和定价的影响

Niharika Prasanna Kumar
{"title":"模拟2019冠状病毒病对印度农产品供应和定价的影响","authors":"Niharika Prasanna Kumar","doi":"10.28945/4897","DOIUrl":null,"url":null,"abstract":"Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India.","PeriodicalId":38962,"journal":{"name":"Interdisciplinary Journal of Information, Knowledge, and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Impact of Covid-19 on the Farm Produce Availability and Pricing in India\",\"authors\":\"Niharika Prasanna Kumar\",\"doi\":\"10.28945/4897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India.\",\"PeriodicalId\":38962,\"journal\":{\"name\":\"Interdisciplinary Journal of Information, Knowledge, and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Journal of Information, Knowledge, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28945/4897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Journal of Information, Knowledge, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28945/4897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

目的/目的:本文旨在分析因Covid-19实施封锁之前和期间易腐农产品的可用性和定价。本文还提出了机器学习和深度学习模型来帮助农民选择合适的市场来销售他们的农产品,并为他们的产品获得公平的价格。背景:像印度这样的发展中国家已经通过《基本商品法》和《农产品市场委员会法》等具体国家的保护性法律来规范农业市场。这些规定将农产品的销售限制在预定的一组当地市场。2019冠状病毒病大流行导致2020年上半年封锁,导致这些当地市场的农产品供应中断和供需不匹配。这些供需动态导致农产品定价中断,导致农民实现的价格较低。因此,有必要从微观层面分析这种中断对农产品定价的影响。此外,农民需要一个工具来引导他们到最合适的市场/城市/城镇出售他们的农产品,以获得公平的价格。方法:使用印度政府发布的农业数据集中的15万个样本进行统计分析,并确定易腐农产品的供应中断和价格中断。此外,超过1.7万个样本被用于实施和训练机器学习和深度学习模型,这些模型可以预测和指导农民出售农产品的合适市场。从本质上讲,本文使用描述性分析来分析COVID-19对农产品价格的影响。本文探讨了使用规范分析来推荐合适的农产品销售市场。贡献:实现了基于逻辑回归、k近邻、支持向量机、随机森林和梯度增强的5个机器学习模型,以及基于人工神经网络的3个深度学习模型。使用Precision、Recall、Accuracy和F1-Score等指标对这些模型的性能进行比较。结果:在5种分类模型中,梯度增强分类器是最优的分类器,其准确率、召回率、准确率和F1得分均达到99%。在三种深度学习模型中,基于Adam优化器的深度神经网络达到了99%的精度、召回率、准确性和F1分数。对从业者的建议:梯度提升技术和基于adam的深度学习模型应该是分析农产品价格相关问题的首选。给研究人员的建议:像随机森林和梯度增强这样的集成学习技术比非集成分类技术表现得更好。超参数调优是开发这些模型的重要步骤,它可以提高模型的性能。对社会的影响:对数据的统计分析揭示了需求和供应以及价格中断的真实性质。这一分析有助于评估新冠肺炎对农民收入的影响。机器学习和深度学习模型帮助农民为他们的作物获得更好的价格。虽然本文使用的数据集与印度有关,但这项研究工作的结果适用于许多拥有类似监管市场的发展中国家。因此,全世界发展中国家的农民都可以从这项研究工作的成果中受益。未来研究:机器学习和深度学习模型在班加罗尔及其周边市场实施和测试。该模式可以扩展到印度的其他市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling the Impact of Covid-19 on the Farm Produce Availability and Pricing in India
Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
14
期刊最新文献
IJIKM Volume 18, 2023 – Table of Contents Factors Affecting Individuals’ Behavioral Intention to Use Online Capital Market Investment Platforms in Indonesia Investigating the Adoption of Social Commerce: A Case Study of SMEs in Jordan The Influence of Big Data Management on Organizational Performance in Organizations: The Role of Electronic Records Management System Potentiality Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1