摩尔曼斯克地区山地冻土带草原和草甸的分类学

Q4 Agricultural and Biological Sciences Rastitel''nost'' Rossii Pub Date : 2019-01-01 DOI:10.31111/vegrus/2019.37.79
N. Koroleva, E. Kopeina, A. Novakovskiy, A. Danilova
{"title":"摩尔曼斯克地区山地冻土带草原和草甸的分类学","authors":"N. Koroleva, E. Kopeina, A. Novakovskiy, A. Danilova","doi":"10.31111/vegrus/2019.37.79","DOIUrl":null,"url":null,"abstract":"Grasslandsandmeadowsoccur on seasonally moist and fresh soils, nearsnowfields, temporaryand permanent streams, springs and brooks, in the low and middle mountain ranges in Murmansk Region (Fig. 1). They occupy relatively small areas, but support high diversity of species and represent “lieblichsten Erscheinungen“, as R. Nordhagen (1928: 353) wrote. Syntaxonomy of this vegetation is still not clear and far from unambiguous explanation. From literature, these communities in Fennoscandiаn mountain tundra are related to several classes: Juncetea trifidi, Saliceteaherbaceae, Thlaspietea rotundifolii and Molinio-Arrhenatheretea, which differ greatly both to habitats and vegetation. In Russian phytocoenology, some researchers include tundra grasslands with dominance of Nardus stricta and Avenella flexuosa in general typology (Ramenskaya, 1958), along with floodplain and dry grasslands and meadows, but other consider such vegetation in mountain tundra as independent type, related to grasslands and meadows in alpine belt (Gorodkov, 1938; Aleksandrova, 1977). Classification of mountain tundra grasslands and meadows in Murmansk Region based on 103 field descriptions and published relevés, with Braun-Blanquet approach applied. Prodromus of syntaxa is provided. Six vegetation associations were related to 4 alliances and 2 classes, three associations were described as new (Table 1). Ass. Carici bigelowii–Nardetum strictae (Zlatník 1928) Jeník 1961 (Table 2), withdiagnostic species Diphasiastrum alpinum and Nardus stricta, includes early snow-bed, poor of species vegetation with dominance of matgrass N. stricta. Аss. Anthoxantho alpini–Deschampsietum flexuosae Nordh. 1943 (Table 3; Fig. 2), with diagnostic species Anthoxanthum alpinum, Avenella flexuosa, includes early snow-bed grasslands, with dominance of Carex bigelowii, Avenella flexuosa, Anthoxanthum alpinum, and presence of diagnostic species of alliance Phyllodoco–Vaccinion myrtilli (Phyllodoce caerulea, Vaccinium myrtillus). Ass. Salici herbaceae–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 4, holotypus — relevé 8 (84/93)), with diagnostic species Alchemilla alpina, Cardaminebellidifolia, Carex bigelowii (dominant), Diplophyllum taxifolium, Lophozia wenzelii, represents rich of species early snow-bed, with dwarf-shrub- and-grass and moss layers. Ass. Hieracio alpini–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 5, holotypus — relevé 10 (46/01)), with diagnostic species Antennaria dioica, Carex bigelowii (dominant), Hieracium alpinum,includes communities rich of grasses and herbs on south-exposed gentle slopes, near springs and brooks. Аss. Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (Nordhagen, 1928: 356–357: «Potentilla crantzii–Polygonum viviparum Ass.»; Kalliola, 1939: 132–135: «Polygonum viviparum–Thalictrum alpinum-Soz.». Table 6, lectotypus hoc loco — relevé 16), diagnostic species Carex atrata, Cerastium alpinum, Erigeron uniflorus, Festuca vivipara, Polytrichastrum alpinum, Potentilla crantzii, Rhodiola rosea, Saussurea alpina, Thalictrum alpinum, Viola biflora.The association is the holotype of the alliance Potentillo–Polygonion vivipari Nordh. 1937 and includes rich of species low-herb meadows in mountain tundra. Association includes three variants: Oxyria digyna (Table 6, № 1–10; Nordhagen, 1928: 356–357, Table, Bestanden I, II), typica (Table 6, № 11–20; Nordhagen, 1928: 356–357, Table, Bestanden III, IV) and Agrostis borealis (Table 6, № 21–29; Kalliola, 1939: 132–135, Table 19, № 3–11). Ass. Salici reticulatae–Trollietum europaei Koroleva et Kopeina ass. nov. hoc loco (Table 7, holotypus — relevé 10 ( m1/16); Fig. 3) with diagnostic species Geranium sylvaticum, Juncus trifidus, Nardus stricta, Salix reticulata,represents species-rich meadows near springs and on gentle slopes, sometimes with patches of low willows and dwarf birch. The association is transitional to the tall-herb shrubs and forests of alliance Mulgedion alpini, class Mulgedio-Aconitetea. To arrange the syntaxa described in Murmansk Region in higher units correctly, we used the first descriptions of following alliances in Fennoscandia: alliance Potentillo–Polygonion vivipari, incl. Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357, Table, Bestanden I–IV) and Polygonum vivparum–Thalictrum alpinum-Soz. (Kalliola, 1939: 132–133, Table 19, № 3–11); alliance Ranunculo–Poion alpinae, incl. Trollius europaeus-soc. (Gjaerevoll, 1950: 420–421, Table XIII, № 1–10); alliance Deschampsio-Anthoxanthion, incl. ass. Deschampsietum flexuosae and ass. Caricetum bigelowii (ibid.: 393–394, Table I, Stands I–V; 396–397, Table II, Stands I, II); alliance Saxifrago stellaris–Oxyrion digynae, incl. ass. Oxyrietum digynae (ibid.: 406–407, Table VI, Stands I–III); alliance Kobresio-Dryadion, incl. Carex rupestris–Encalypta rhabdocarpa sos. (Nordhagen, 1943: 576–577, Table 99, Serie I–III) and аss. Dryadetum octopetalae (Nordhagen, 1955: 76–81, Table III, no. 17–33), as well as descriptions of ass. Polygono vivpari–Thalictretum alpini (Kalliola 1939) Koroleva 2006 from the Barents Sea shore. In total 113 relevés were analyzed with use of Program ExStatR (Novakovskiy, 2016) based on the Non-metric Multidimensional Scaling (NMS), and hierarchical clustering with grouping by arithmetic means UPGMA. In both methods, the Sjørensen-Chekanovsky coefficient was used as a measure of similarity/distance. All relevés represent rather distinctive groups in ordination space (Fig. 4), with few transitional ones. Two well-expressed gradients explain the variation in grasslands and meadows: (1) snow-depth and calcium-availability and (2) height above the sea level, together with steepness of the slope and coarseness of substrata. On the one end of the axis 2 there are communities of the ass. Carici bigelowii–Nardetum strictae (Table 2; Fig. 4, group 3) with diagnostic species Nardus stricta and Diphasiastrum alpinum. They represent closed and species-poor (39 species in syntaxon, 11 species per relevé in average) mono-dominant vegetation in snow-bed depressions, which are water-inundated in the beginning of the growing season, but dry up quickly. Rather compact group of communities of Kobresio-Dryadion (Fig. 4, groups 14 and 15), described by Nordhagen in Ca-rich habitats in Scandinavian mountains, with constant species Dryas octopetala, Saxifraga oppositifolia, Carexrupestris, Alectoria nigricans, A. ochroleuca, Flavocetraria cucullata and F. nivalis occupies an opposite end. Second gradient (axis 1) starts with meadows associated with the moderate snow and moisture conditions in zonal tundra in Murmansk Region (Fig. 4, group 4: Polygono vivpari–Thalictretum alpini; Koroleva, 2006). It finishes with relevés of Gjaerevoll’s (1950) ass. Oxyrietumdigynae (all. Saxifrago stellaris–Oxyrion digynae), which occurs on stony and moist substrata on steep slopes of high Scandinavian ranges (Fig. 4, group 13). Among constant species there are mosses and liverworts Andreaea rupestris, Anthelia juratzkana, Hymenoloma crispulum,hygro-, and mesophytic herbs Epilobium anagallidifolium and Saxifraga stellaris. In close position on the ordination diagram are early snow-beds in Murmansk Region, ass. Salici herbaceae–Caricetum bigelowii, with diagnostic species Alchemilla alpina, Carex bigelowii, Cardaminebellidifolia, Diplophyllum taxifolium, Lophozia wenzelii (Table 4; Fig. 4, group 1). Ass. Anthoxantho alpini–Deschampsietum flexuosae with diagnostic species Anthoxanthum alpinum, Avenella flexuosa (Table 3; Fig. 4, group 2) comprises vegetation in transitional habitats from late snow-beds to moss-blueberry tundra and has large portion of dwarf shrubs of Phyllodoco–Vaccinion myrtilli. On the ordination diagram, these communities differ from Gjaerevoll’s (1950) relevés of Deschampsio-Anthoxanthion (Fig. 4, group 12); they are ecologically similar with snow-bed communities. Central parts of the both gradients are occupied by the meadows of following associations: Hieracio alpini–Caricetum bigelowii (Table 5; Fig. 4, group 8), Potentillo crantzii–Polygonetum vivipari (Fig. 4, group 6) and Salici reticulatae–Trollietum europaei (Table 7; Fig. 4, group 7). All of them belong to alliance Potentillo–Polygonion vivipari (diagnostic species: Anthoxanthum alpinum, Bartsia alpina, Bistorta vivipara, Distichium capillaceum, Luzula spicata, Poa alpina, Potentilla crantzii, Ranunculus acris, Salix reticulata, Sanionia uncinata, Saussurea alpina, Selaginella selaginoides, Silene acaulis, Taraxacum croceum, Trollius europaeus, Veronica alpina, Viola biflora). They represent the richest tundra meadows (to 134 species in association and 41 species in community), with dominance of mesophytic herbs, high number of dwarf-shrubs, presence of mosses and liverworts. The alliance is well presented on the cluster dendrogram (Fig. 5). The first reference to alliance Potentillo–Polygonion vivipari was published by Nordhagen (1937: 37–43) and contained synoptical table and direct reference to Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357) as the most characteristic type of the alliance. So the alliance could be considered effectively and validly published (ICPN: Art. 1, 2b). Since Potentilla crantzii–Polygonum viviparum Ass. represents the only element published with the valid name with direct reference in the original diagnosis of the alliance, it must therefore be accepted as the holotype (ICPN: Art. 18a), and the name should be corrected to Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (ICPN: Art. 41b). Later on, R. Kalliola (1939) and N. Koroleva (2006) also published one syntaxon in this alliance: publication of holotype by Koroleva (2006) is superfluous, because original diagnoses of Nordhagen (1937) is accompanied by clear reference to type association in the paper by Nordhagen (1928) (ICPN: Art. 21). The original diagnosis of Gjaerevoll’s (1950) alliance Ranunculo–Poi","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The syntaxonomy of the grasslands and meadows in mountain tundra of Murmansk Region\",\"authors\":\"N. Koroleva, E. Kopeina, A. Novakovskiy, A. Danilova\",\"doi\":\"10.31111/vegrus/2019.37.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasslandsandmeadowsoccur on seasonally moist and fresh soils, nearsnowfields, temporaryand permanent streams, springs and brooks, in the low and middle mountain ranges in Murmansk Region (Fig. 1). They occupy relatively small areas, but support high diversity of species and represent “lieblichsten Erscheinungen“, as R. Nordhagen (1928: 353) wrote. Syntaxonomy of this vegetation is still not clear and far from unambiguous explanation. From literature, these communities in Fennoscandiаn mountain tundra are related to several classes: Juncetea trifidi, Saliceteaherbaceae, Thlaspietea rotundifolii and Molinio-Arrhenatheretea, which differ greatly both to habitats and vegetation. In Russian phytocoenology, some researchers include tundra grasslands with dominance of Nardus stricta and Avenella flexuosa in general typology (Ramenskaya, 1958), along with floodplain and dry grasslands and meadows, but other consider such vegetation in mountain tundra as independent type, related to grasslands and meadows in alpine belt (Gorodkov, 1938; Aleksandrova, 1977). Classification of mountain tundra grasslands and meadows in Murmansk Region based on 103 field descriptions and published relevés, with Braun-Blanquet approach applied. Prodromus of syntaxa is provided. Six vegetation associations were related to 4 alliances and 2 classes, three associations were described as new (Table 1). Ass. Carici bigelowii–Nardetum strictae (Zlatník 1928) Jeník 1961 (Table 2), withdiagnostic species Diphasiastrum alpinum and Nardus stricta, includes early snow-bed, poor of species vegetation with dominance of matgrass N. stricta. Аss. Anthoxantho alpini–Deschampsietum flexuosae Nordh. 1943 (Table 3; Fig. 2), with diagnostic species Anthoxanthum alpinum, Avenella flexuosa, includes early snow-bed grasslands, with dominance of Carex bigelowii, Avenella flexuosa, Anthoxanthum alpinum, and presence of diagnostic species of alliance Phyllodoco–Vaccinion myrtilli (Phyllodoce caerulea, Vaccinium myrtillus). Ass. Salici herbaceae–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 4, holotypus — relevé 8 (84/93)), with diagnostic species Alchemilla alpina, Cardaminebellidifolia, Carex bigelowii (dominant), Diplophyllum taxifolium, Lophozia wenzelii, represents rich of species early snow-bed, with dwarf-shrub- and-grass and moss layers. Ass. Hieracio alpini–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 5, holotypus — relevé 10 (46/01)), with diagnostic species Antennaria dioica, Carex bigelowii (dominant), Hieracium alpinum,includes communities rich of grasses and herbs on south-exposed gentle slopes, near springs and brooks. Аss. Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (Nordhagen, 1928: 356–357: «Potentilla crantzii–Polygonum viviparum Ass.»; Kalliola, 1939: 132–135: «Polygonum viviparum–Thalictrum alpinum-Soz.». Table 6, lectotypus hoc loco — relevé 16), diagnostic species Carex atrata, Cerastium alpinum, Erigeron uniflorus, Festuca vivipara, Polytrichastrum alpinum, Potentilla crantzii, Rhodiola rosea, Saussurea alpina, Thalictrum alpinum, Viola biflora.The association is the holotype of the alliance Potentillo–Polygonion vivipari Nordh. 1937 and includes rich of species low-herb meadows in mountain tundra. Association includes three variants: Oxyria digyna (Table 6, № 1–10; Nordhagen, 1928: 356–357, Table, Bestanden I, II), typica (Table 6, № 11–20; Nordhagen, 1928: 356–357, Table, Bestanden III, IV) and Agrostis borealis (Table 6, № 21–29; Kalliola, 1939: 132–135, Table 19, № 3–11). Ass. Salici reticulatae–Trollietum europaei Koroleva et Kopeina ass. nov. hoc loco (Table 7, holotypus — relevé 10 ( m1/16); Fig. 3) with diagnostic species Geranium sylvaticum, Juncus trifidus, Nardus stricta, Salix reticulata,represents species-rich meadows near springs and on gentle slopes, sometimes with patches of low willows and dwarf birch. The association is transitional to the tall-herb shrubs and forests of alliance Mulgedion alpini, class Mulgedio-Aconitetea. To arrange the syntaxa described in Murmansk Region in higher units correctly, we used the first descriptions of following alliances in Fennoscandia: alliance Potentillo–Polygonion vivipari, incl. Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357, Table, Bestanden I–IV) and Polygonum vivparum–Thalictrum alpinum-Soz. (Kalliola, 1939: 132–133, Table 19, № 3–11); alliance Ranunculo–Poion alpinae, incl. Trollius europaeus-soc. (Gjaerevoll, 1950: 420–421, Table XIII, № 1–10); alliance Deschampsio-Anthoxanthion, incl. ass. Deschampsietum flexuosae and ass. Caricetum bigelowii (ibid.: 393–394, Table I, Stands I–V; 396–397, Table II, Stands I, II); alliance Saxifrago stellaris–Oxyrion digynae, incl. ass. Oxyrietum digynae (ibid.: 406–407, Table VI, Stands I–III); alliance Kobresio-Dryadion, incl. Carex rupestris–Encalypta rhabdocarpa sos. (Nordhagen, 1943: 576–577, Table 99, Serie I–III) and аss. Dryadetum octopetalae (Nordhagen, 1955: 76–81, Table III, no. 17–33), as well as descriptions of ass. Polygono vivpari–Thalictretum alpini (Kalliola 1939) Koroleva 2006 from the Barents Sea shore. In total 113 relevés were analyzed with use of Program ExStatR (Novakovskiy, 2016) based on the Non-metric Multidimensional Scaling (NMS), and hierarchical clustering with grouping by arithmetic means UPGMA. In both methods, the Sjørensen-Chekanovsky coefficient was used as a measure of similarity/distance. All relevés represent rather distinctive groups in ordination space (Fig. 4), with few transitional ones. Two well-expressed gradients explain the variation in grasslands and meadows: (1) snow-depth and calcium-availability and (2) height above the sea level, together with steepness of the slope and coarseness of substrata. On the one end of the axis 2 there are communities of the ass. Carici bigelowii–Nardetum strictae (Table 2; Fig. 4, group 3) with diagnostic species Nardus stricta and Diphasiastrum alpinum. They represent closed and species-poor (39 species in syntaxon, 11 species per relevé in average) mono-dominant vegetation in snow-bed depressions, which are water-inundated in the beginning of the growing season, but dry up quickly. Rather compact group of communities of Kobresio-Dryadion (Fig. 4, groups 14 and 15), described by Nordhagen in Ca-rich habitats in Scandinavian mountains, with constant species Dryas octopetala, Saxifraga oppositifolia, Carexrupestris, Alectoria nigricans, A. ochroleuca, Flavocetraria cucullata and F. nivalis occupies an opposite end. Second gradient (axis 1) starts with meadows associated with the moderate snow and moisture conditions in zonal tundra in Murmansk Region (Fig. 4, group 4: Polygono vivpari–Thalictretum alpini; Koroleva, 2006). It finishes with relevés of Gjaerevoll’s (1950) ass. Oxyrietumdigynae (all. Saxifrago stellaris–Oxyrion digynae), which occurs on stony and moist substrata on steep slopes of high Scandinavian ranges (Fig. 4, group 13). Among constant species there are mosses and liverworts Andreaea rupestris, Anthelia juratzkana, Hymenoloma crispulum,hygro-, and mesophytic herbs Epilobium anagallidifolium and Saxifraga stellaris. In close position on the ordination diagram are early snow-beds in Murmansk Region, ass. Salici herbaceae–Caricetum bigelowii, with diagnostic species Alchemilla alpina, Carex bigelowii, Cardaminebellidifolia, Diplophyllum taxifolium, Lophozia wenzelii (Table 4; Fig. 4, group 1). Ass. Anthoxantho alpini–Deschampsietum flexuosae with diagnostic species Anthoxanthum alpinum, Avenella flexuosa (Table 3; Fig. 4, group 2) comprises vegetation in transitional habitats from late snow-beds to moss-blueberry tundra and has large portion of dwarf shrubs of Phyllodoco–Vaccinion myrtilli. On the ordination diagram, these communities differ from Gjaerevoll’s (1950) relevés of Deschampsio-Anthoxanthion (Fig. 4, group 12); they are ecologically similar with snow-bed communities. Central parts of the both gradients are occupied by the meadows of following associations: Hieracio alpini–Caricetum bigelowii (Table 5; Fig. 4, group 8), Potentillo crantzii–Polygonetum vivipari (Fig. 4, group 6) and Salici reticulatae–Trollietum europaei (Table 7; Fig. 4, group 7). All of them belong to alliance Potentillo–Polygonion vivipari (diagnostic species: Anthoxanthum alpinum, Bartsia alpina, Bistorta vivipara, Distichium capillaceum, Luzula spicata, Poa alpina, Potentilla crantzii, Ranunculus acris, Salix reticulata, Sanionia uncinata, Saussurea alpina, Selaginella selaginoides, Silene acaulis, Taraxacum croceum, Trollius europaeus, Veronica alpina, Viola biflora). They represent the richest tundra meadows (to 134 species in association and 41 species in community), with dominance of mesophytic herbs, high number of dwarf-shrubs, presence of mosses and liverworts. The alliance is well presented on the cluster dendrogram (Fig. 5). The first reference to alliance Potentillo–Polygonion vivipari was published by Nordhagen (1937: 37–43) and contained synoptical table and direct reference to Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357) as the most characteristic type of the alliance. So the alliance could be considered effectively and validly published (ICPN: Art. 1, 2b). Since Potentilla crantzii–Polygonum viviparum Ass. represents the only element published with the valid name with direct reference in the original diagnosis of the alliance, it must therefore be accepted as the holotype (ICPN: Art. 18a), and the name should be corrected to Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (ICPN: Art. 41b). Later on, R. Kalliola (1939) and N. Koroleva (2006) also published one syntaxon in this alliance: publication of holotype by Koroleva (2006) is superfluous, because original diagnoses of Nordhagen (1937) is accompanied by clear reference to type association in the paper by Nordhagen (1928) (ICPN: Art. 21). The original diagnosis of Gjaerevoll’s (1950) alliance Ranunculo–Poi\",\"PeriodicalId\":37606,\"journal\":{\"name\":\"Rastitel''nost'' Rossii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rastitel''nost'' Rossii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31111/vegrus/2019.37.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rastitel''nost'' Rossii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31111/vegrus/2019.37.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

在摩尔曼斯克地区的中低山脉中,草原和草甸生长在季节性湿润和新鲜的土壤上,靠近雪原,有临时和永久的溪流、泉水和小溪(图1)。它们占据的面积相对较小,但支持着物种的高度多样性,正如R. Nordhagen(1928: 353)所写的那样,它们代表着“lieblichsten Erscheinungen”。这种植物的分类学仍然不清楚,离明确的解释还很远。从文献资料来看,fennoscandia山地冻土带的这些群落分属Juncetea trifidi、Saliceteaherbaceae、Thlaspietea rotundifolii和Molinio-Arrhenatheretea几个纲,它们的生境和植被差异很大。在俄罗斯植物群落学中,一些研究人员将以狭窄Nardus和Avenella flexuosa为优势的冻土带草原作为一般类型(Ramenskaya, 1958),以及洪泛平原和干草地和草甸,但另一些研究人员认为山地冻土带的这类植被是独立类型,与高寒带的草地和草甸有关(Gorodkov, 1938;Aleksandrova, 1977)。基于103个野外描述和相关文献的摩尔曼斯克地区山地冻土带草地和草甸分类。提供了句法的前驱。6个植被群落隶属于4个属2个纲,其中3个群落为新属(表1)。as . Carici bigelowii-Nardetum strictae (Zlatník 1928) Jeník 1961(表2),诊断种为Diphasiastrum alpinum和Nardus stricta,包括早期雪床,以matgrass N. stricta为优势的较差物种植被。А党卫军。alpini - deschampsitum flexuosae Nordh. 1943(表3;图2),诊断种为高山花楸(Anthoxanthum alpinum)、弯曲花楸(Avenella flexuosa),包括早期的雪床草原,优势种为大叶草(Carex bigelowii)、弯曲花楸(Avenella flexuosa)、高山花楸(Anthoxanthum alpinum alpinum),诊断种为Phyllodoce - myrtilli (Phyllodoce caerulea, Vaccinium myrtillus)。Salici herbaceae-Caricetum bigelowii Koroleva et Kopeina Ass. 11 . hoc loco(表4,holotypus - rele文献8(84/93)),诊断种Alchemilla alpina、Cardaminebellidifolia、Carex bigelowii(优势种)、Diplophyllum taxifolium、Lophozia wenzelii,代表了丰富的早期雪床物种,具有矮灌木-草和苔藓层。a . Hieracio alpini-Caricetum bigelowii Koroleva et Kopeina Ass. 11 . hoc loco(表5,holotypus - rele文献10(46/01)),诊断种为Antennaria dioica, Carex bigelowii(优势种),Hieracium alpinum,包括南露的平缓斜坡上,靠近泉和溪的丰富的草和草本群落。А党卫军。north dhagen, 1928: 356-357:«Potentilla grantzii - polygonum viviparum Ass.»;植物学报,1939:132-135;«蓼属植物-蓼属植物-苏斯»。表6,诊断种:白苔草、高山Cerastium alpinum、单花灯盏花、活羊茅、高山蓼、白陵草、红景天、高山雪莲、山楂、双花堇菜。该协会是Potentillo-Polygonion vivipari Nordh. 1937联盟的原型,包括丰富的山地苔原低草本草甸物种。关联包括三个变体:Oxyria digyna(表6,№1-10;诺德哈根,1928:356-357,表,Bestanden I, II),典型(表6,№11-20;Nordhagen, 1928: 356-357,表,Bestanden III, IV)和Agrostis borealis(表6,№21-29;Kalliola, 1939: 132-135,表19,№3-11)。网状水蛭(Salici reticulatae) -欧洲水蛭(trollietum europaei Koroleva)和Kopeina ass11 . hoc loco(表7,holotypus - relevant 10 (m1/16);图3)诊断种天竺葵(Geranium sylvatium)、三叶柳(Juncus trifidus)、窄叶柳(Nardus stricta)、网柳(Salix reticulata)代表了靠近泉水和缓坡上物种丰富的草地,有时有低矮的柳树和矮桦树斑块。该协会是过渡到高草本灌木和森林联盟,乌头茶,乌头茶纲。为了将摩尔曼斯克地区描述的合群正确地排列在更高的单位中,我们使用了Fennoscandia中以下联盟的第一个描述:Potentillo-Polygonion vivipari联盟,包括Potentilla crantzii-Polygonum viviparum Ass. (Nordhagen, 1928: 356-357, Table, Bestanden I-IV)和Polygonum vivparum alpinum-Soz。(Kalliola, 1939: 132-133,表19,№3-11);毛茛属植物,包括毛茛属植物。(地球物理学报,1950:420-421,表十三,№1-10);deschampsitum - anthanthanthion,包括deschampsitum flexuosae和Caricetum bigelowii(同上:393-394,Table I, stand I - v;396-397,表二,展位一,二);虎耳草-虎耳草,包括虎耳草属(同上:406-407,Table VI,展位I-III);小檗-森林联盟,包括毛茛-横纹树。(Nordhagen, 1943: 576-577, Table 99, Serie I-III)和ss。 在摩尔曼斯克地区的中低山脉中,草原和草甸生长在季节性湿润和新鲜的土壤上,靠近雪原,有临时和永久的溪流、泉水和小溪(图1)。它们占据的面积相对较小,但支持着物种的高度多样性,正如R. Nordhagen(1928: 353)所写的那样,它们代表着“lieblichsten Erscheinungen”。这种植物的分类学仍然不清楚,离明确的解释还很远。从文献资料来看,fennoscandia山地冻土带的这些群落分属Juncetea trifidi、Saliceteaherbaceae、Thlaspietea rotundifolii和Molinio-Arrhenatheretea几个纲,它们的生境和植被差异很大。在俄罗斯植物群落学中,一些研究人员将以狭窄Nardus和Avenella flexuosa为优势的冻土带草原作为一般类型(Ramenskaya, 1958),以及洪泛平原和干草地和草甸,但另一些研究人员认为山地冻土带的这类植被是独立类型,与高寒带的草地和草甸有关(Gorodkov, 1938;Aleksandrova, 1977)。基于103个野外描述和相关文献的摩尔曼斯克地区山地冻土带草地和草甸分类。提供了句法的前驱。6个植被群落隶属于4个属2个纲,其中3个群落为新属(表1)。as . Carici bigelowii-Nardetum strictae (Zlatník 1928) Jeník 1961(表2),诊断种为Diphasiastrum alpinum和Nardus stricta,包括早期雪床,以matgrass N. stricta为优势的较差物种植被。А党卫军。alpini - deschampsitum flexuosae Nordh. 1943(表3;图2),诊断种为高山花楸(Anthoxanthum alpinum)、弯曲花楸(Avenella flexuosa),包括早期的雪床草原,优势种为大叶草(Carex bigelowii)、弯曲花楸(Avenella flexuosa)、高山花楸(Anthoxanthum alpinum alpinum),诊断种为Phyllodoce - myrtilli (Phyllodoce caerulea, Vaccinium myrtillus)。Salici herbaceae-Caricetum bigelowii Koroleva et Kopeina Ass. 11 . hoc loco(表4,holotypus - rele文献8(84/93)),诊断种Alchemilla alpina、Cardaminebellidifolia、Carex bigelowii(优势种)、Diplophyllum taxifolium、Lophozia wenzelii,代表了丰富的早期雪床物种,具有矮灌木-草和苔藓层。a . Hieracio alpini-Caricetum bigelowii Koroleva et Kopeina Ass. 11 . hoc loco(表5,holotypus - rele文献10(46/01)),诊断种为Antennaria dioica, Carex bigelowii(优势种),Hieracium alpinum,包括南露的平缓斜坡上,靠近泉和溪的丰富的草和草本群落。А党卫军。north dhagen, 1928: 356-357:«Potentilla grantzii - polygonum viviparum Ass.»;植物学报,1939:132-135;«蓼属植物-蓼属植物-苏斯»。表6,诊断种:白苔草、高山Cerastium alpinum、单花灯盏花、活羊茅、高山蓼、白陵草、红景天、高山雪莲、山楂、双花堇菜。该协会是Potentillo-Polygonion vivipari Nordh. 1937联盟的原型,包括丰富的山地苔原低草本草甸物种。关联包括三个变体:Oxyria digyna(表6,№1-10;诺德哈根,1928:356-357,表,Bestanden I, II),典型(表6,№11-20;Nordhagen, 1928: 356-357,表,Bestanden III, IV)和Agrostis borealis(表6,№21-29;Kalliola, 1939: 132-135,表19,№3-11)。网状水蛭(Salici reticulatae) -欧洲水蛭(trollietum europaei Koroleva)和Kopeina ass11 . hoc loco(表7,holotypus - relevant 10 (m1/16);图3)诊断种天竺葵(Geranium sylvatium)、三叶柳(Juncus trifidus)、窄叶柳(Nardus stricta)、网柳(Salix reticulata)代表了靠近泉水和缓坡上物种丰富的草地,有时有低矮的柳树和矮桦树斑块。该协会是过渡到高草本灌木和森林联盟,乌头茶,乌头茶纲。为了将摩尔曼斯克地区描述的合群正确地排列在更高的单位中,我们使用了Fennoscandia中以下联盟的第一个描述:Potentillo-Polygonion vivipari联盟,包括Potentilla crantzii-Polygonum viviparum Ass. (Nordhagen, 1928: 356-357, Table, Bestanden I-IV)和Polygonum vivparum alpinum-Soz。(Kalliola, 1939: 132-133,表19,№3-11);毛茛属植物,包括毛茛属植物。(地球物理学报,1950:420-421,表十三,№1-10);deschampsitum - anthanthanthion,包括deschampsitum flexuosae和Caricetum bigelowii(同上:393-394,Table I, stand I - v;396-397,表二,展位一,二);虎耳草-虎耳草,包括虎耳草属(同上:406-407,Table VI,展位I-III);小檗-森林联盟,包括毛茛-横纹树。(Nordhagen, 1943: 576-577, Table 99, Serie I-III)和ss。 八爪树齿兽(Nordhagen, 1955: 76-81),表三,编号。17-33),以及对巴伦支海岸的Polygono vivpari-Thalictretum alpini (Kalliola 1939) Koroleva 2006的描述。使用基于非度量多维尺度(NMS)的Program ExStatR (Novakovskiy, 2016)和基于算术均值UPGMA分组的分层聚类对113个相关的数据进行分析。两种方法均采用Sjørensen-Chekanovsky系数作为相似性/距离的度量。在协调空间中,所有相关的<s:1> <s:1> <s:1>干涉器(Fig. 4)都代表了不同的群体,很少有过渡群体。两个很好地表达的梯度解释了草地和草甸的变化:(1)雪深和钙有效性;(2)海拔高度,以及斜坡的陡峭度和基底的粗糙度。在轴2的一端有驴群落。Carici bigelowii-Nardetum strictae(表2;图4,组3)与诊断种Nardus stricta和Diphasiastrum alpinum。它们代表了雪床洼地中封闭和物种贫乏的单优势植被(39种属,平均每个相关11种),在生长季节开始时被水淹没,但很快就会干涸。Nordhagen在斯堪的纳维亚山区富钙栖息地描述了一组相当紧凑的Kobresio-Dryadion群落(图4,第14组和第15组),固定的物种有:Dryas octopetala、Saxifraga oppositifolia、Carexrupestris、Alectoria nigricans、A. ochroleuca、flavococtraria cucullata和F. nivalis。第二个梯度(轴1)从摩尔曼斯克地区地带性冻土带中与中度降雪和湿度条件相关的草甸开始(图4,第4组:Polygono vivpari-Thalictretum alpini;Koroleva, 2006)。它以Gjaerevoll的(1950)ass. Oxyrietumdigynae(所有的)的相关材料结束。Saxifrago stellaris-Oxyrion digynae),它生长在斯堪的纳维亚山脉陡坡上的多石和潮湿的基底上(图4,第13组)。在固定种中有藓类和苔类植物:红柳、菊苣、羊膜草、湿生和中生草本植物:毛叶草和星叶草。排序图上位置靠前的是摩尔曼斯克地区早期雪床,Salici herbaceae-Caricetum bigelowii,诊断种为Alchemilla alpina、Carex bigelowii、Cardaminebellidifolia、Diplophyllum taxifolium、Lophozia wenzelii(表4;图4,第1组). a .高山花药-曲曲斑胸草与诊断种高山花药,曲曲斑胸草(表3;图4,第2组)包括从晚雪床到苔藓-蓝莓冻土带过渡生境的植被,其中有很大一部分是Phyllodoco-Vaccinion myrtilli矮灌木。在排序图上,这些群落不同于Gjaerevoll(1950)对deschampsio - anthanthion的相关统计(图4,第12组);它们在生态上与雪床群落相似。两个梯度的中心部分被以下群落的草甸所占据:高山草甸-大叶林(表5);图4,第8组)、Potentillo crantzium - polygonetum vivipari(图4,第6组)和Salici reticulatae - trolitum europaei(表7;图4,第7组)。它们都属于白百合联盟(诊断种:阿尔卑斯花、阿尔卑斯巴仔、vivipara、毛缕草、斑马草、高山Poa、白缕草、毛茛、网纹柳、金盏花、高山雪莲、Selaginella selaginoides、Silene acaulis、Taraxacum croceum、eurolius、Veronica alpina、Viola biflora)。它们代表了最丰富的苔原草甸(联合种134种,群落种41种),以中生草本植物为主,矮灌木数量多,存在苔藓和苔类植物。该联盟在星团树状图上得到了很好的展示(图5)。第一次提到Potentillo-Polygonion vivipari联盟是由Nordhagen(1937: 37-43)发表的,其中包含了天象表,并直接提到了Potentilla crantzii-Polygonum viviparum Ass. (Nordhagen, 1928: 356-357),这是该联盟最具特色的类型。因此,该联盟可以被视为有效和有效地发布(ICPN: Art. 12,2b)。由于Potentillo crantzii-Polygonum viviparum as .代表了唯一在联盟的原始诊断中直接引用有效名称的元素,因此它必须被接受为完整型(ICPN:第18a条),并且名称应更正为Potentillo crantzii-Polygonetum vivipari Nordh. 1928 (ICPN:第41b条)。后来,R. Kalliola(1939)和N. Koroleva(2006)也在这个联盟中发表了一种句法:Koroleva(2006)发表的holotype是多余的,因为Nordhagen(1937)的原始诊断在Nordhagen(1928)的论文中明确提到了类型关联(ICPN: Art. 21)。 八爪树齿兽(Nordhagen, 1955: 76-81),表三,编号。17-33),以及对巴伦支海岸的Polygono vivpari-Thalictretum alpini (Kalliola 1939) Koroleva 2006的描述。使用基于非度量多维尺度(NMS)的Program ExStatR (Novakovskiy, 2016)和基于算术均值UPGMA分组的分层聚类对113个相关的数据进行分析。两种方法均采用Sjørensen-Chekanovsky系数作为相似性/距离的度量。在协调空间中,所有相关的<s:1> <s:1> <s:1>干涉器(Fig. 4)都代表了不同的群体,很少有过渡群体。两个很好地表达的梯度解释了草地和草甸的变化:(1)雪深和钙有效性;(2)海拔高度,以及斜坡的陡峭度和基底的粗糙度。在轴2的一端有驴群落。Carici bigelowii-Nardetum strictae(表2;图4,组3)与诊断种Nardus stricta和Diphasiastrum alpinum。它们代表了雪床洼地中封闭和物种贫乏的单优势植被(39种属,平均每个相关11种),在生长季节开始时被水淹没,但很快就会干涸。Nordhagen在斯堪的纳维亚山区富钙栖息地描述了一组相当紧凑的Kobresio-Dryadion群落(图4,第14组和第15组),固定的物种有:Dryas octopetala、Saxifraga oppositifolia、Carexrupestris、Alectoria nigricans、A. ochroleuca、flavococtraria cucullata和F. nivalis。第二个梯度(轴1)从摩尔曼斯克地区地带性冻土带中与中度降雪和湿度条件相关的草甸开始(图4,第4组:Polygono vivpari-Thalictretum alpini;Koroleva, 2006)。它以Gjaerevoll的(1950)ass. Oxyrietumdigynae(所有的)的相关材料结束。Saxifrago stellaris-Oxyrion digynae),它生长在斯堪的纳维亚山脉陡坡上的多石和潮湿的基底上(图4,第13组)。在固定种中有藓类和苔类植物:红柳、菊苣、羊膜草、湿生和中生草本植物:毛叶草和星叶草。排序图上位置靠前的是摩尔曼斯克地区早期雪床,Salici herbaceae-Caricetum bigelowii,诊断种为Alchemilla alpina、Carex bigelowii、Cardaminebellidifolia、Diplophyllum taxifolium、Lophozia wenzelii(表4;图4,第1组). a .高山花药-曲曲斑胸草与诊断种高山花药,曲曲斑胸草(表3;图4,第2组)包括从晚雪床到苔藓-蓝莓冻土带过渡生境的植被,其中有很大一部分是Phyllodoco-Vaccinion myrtilli矮灌木。在排序图上,这些群落不同于Gjaerevoll(1950)对deschampsio - anthanthion的相关统计(图4,第12组);它们在生态上与雪床群落相似。两个梯度的中心部分被以下群落的草甸所占据:高山草甸-大叶林(表5);图4,第8组)、Potentillo crantzium - polygonetum vivipari(图4,第6组)和Salici reticulatae - trolitum europaei(表7;图4,第7组)。它们都属于白百合联盟(诊断种:阿尔卑斯花、阿尔卑斯巴仔、vivipara、毛缕草、斑马草、高山Poa、白缕草、毛茛、网纹柳、金盏花、高山雪莲、Selaginella selaginoides、Silene acaulis、Taraxacum croceum、eurolius、Veronica alpina、Viola biflora)。它们代表了最丰富的苔原草甸(联合种134种,群落种41种),以中生草本植物为主,矮灌木数量多,存在苔藓和苔类植物。该联盟在星团树状图上得到了很好的展示(图5)。第一次提到Potentillo-Polygonion vivipari联盟是由Nordhagen(1937: 37-43)发表的,其中包含了天象表,并直接提到了Potentilla crantzii-Polygonum viviparum Ass. (Nordhagen, 1928: 356-357),这是该联盟最具特色的类型。因此,该联盟可以被视为有效和有效地发布(ICPN: Art. 12,2b)。由于Potentillo crantzii-Polygonum viviparum as .代表了唯一在联盟的原始诊断中直接引用有效名称的元素,因此它必须被接受为完整型(ICPN:第18a条),并且名称应更正为Potentillo crantzii-Polygonetum vivipari Nordh. 1928 (ICPN:第41b条)。后来,R. Kalliola(1939)和N. Koroleva(2006)也在这个联盟中发表了一种句法:Koroleva(2006)发表的holotype是多余的,因为Nordhagen(1937)的原始诊断在Nordhagen(1928)的论文中明确提到了类型关联(ICPN: Art. 21)。 Gjaerevoll(1950)联盟的原始诊断Ranunculo-Poi Gjaerevoll(1950)联盟的原始诊断Ranunculo-Poi
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The syntaxonomy of the grasslands and meadows in mountain tundra of Murmansk Region
Grasslandsandmeadowsoccur on seasonally moist and fresh soils, nearsnowfields, temporaryand permanent streams, springs and brooks, in the low and middle mountain ranges in Murmansk Region (Fig. 1). They occupy relatively small areas, but support high diversity of species and represent “lieblichsten Erscheinungen“, as R. Nordhagen (1928: 353) wrote. Syntaxonomy of this vegetation is still not clear and far from unambiguous explanation. From literature, these communities in Fennoscandiаn mountain tundra are related to several classes: Juncetea trifidi, Saliceteaherbaceae, Thlaspietea rotundifolii and Molinio-Arrhenatheretea, which differ greatly both to habitats and vegetation. In Russian phytocoenology, some researchers include tundra grasslands with dominance of Nardus stricta and Avenella flexuosa in general typology (Ramenskaya, 1958), along with floodplain and dry grasslands and meadows, but other consider such vegetation in mountain tundra as independent type, related to grasslands and meadows in alpine belt (Gorodkov, 1938; Aleksandrova, 1977). Classification of mountain tundra grasslands and meadows in Murmansk Region based on 103 field descriptions and published relevés, with Braun-Blanquet approach applied. Prodromus of syntaxa is provided. Six vegetation associations were related to 4 alliances and 2 classes, three associations were described as new (Table 1). Ass. Carici bigelowii–Nardetum strictae (Zlatník 1928) Jeník 1961 (Table 2), withdiagnostic species Diphasiastrum alpinum and Nardus stricta, includes early snow-bed, poor of species vegetation with dominance of matgrass N. stricta. Аss. Anthoxantho alpini–Deschampsietum flexuosae Nordh. 1943 (Table 3; Fig. 2), with diagnostic species Anthoxanthum alpinum, Avenella flexuosa, includes early snow-bed grasslands, with dominance of Carex bigelowii, Avenella flexuosa, Anthoxanthum alpinum, and presence of diagnostic species of alliance Phyllodoco–Vaccinion myrtilli (Phyllodoce caerulea, Vaccinium myrtillus). Ass. Salici herbaceae–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 4, holotypus — relevé 8 (84/93)), with diagnostic species Alchemilla alpina, Cardaminebellidifolia, Carex bigelowii (dominant), Diplophyllum taxifolium, Lophozia wenzelii, represents rich of species early snow-bed, with dwarf-shrub- and-grass and moss layers. Ass. Hieracio alpini–Caricetum bigelowii Koroleva et Kopeina ass. nov. hoc loco (Table 5, holotypus — relevé 10 (46/01)), with diagnostic species Antennaria dioica, Carex bigelowii (dominant), Hieracium alpinum,includes communities rich of grasses and herbs on south-exposed gentle slopes, near springs and brooks. Аss. Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (Nordhagen, 1928: 356–357: «Potentilla crantzii–Polygonum viviparum Ass.»; Kalliola, 1939: 132–135: «Polygonum viviparum–Thalictrum alpinum-Soz.». Table 6, lectotypus hoc loco — relevé 16), diagnostic species Carex atrata, Cerastium alpinum, Erigeron uniflorus, Festuca vivipara, Polytrichastrum alpinum, Potentilla crantzii, Rhodiola rosea, Saussurea alpina, Thalictrum alpinum, Viola biflora.The association is the holotype of the alliance Potentillo–Polygonion vivipari Nordh. 1937 and includes rich of species low-herb meadows in mountain tundra. Association includes three variants: Oxyria digyna (Table 6, № 1–10; Nordhagen, 1928: 356–357, Table, Bestanden I, II), typica (Table 6, № 11–20; Nordhagen, 1928: 356–357, Table, Bestanden III, IV) and Agrostis borealis (Table 6, № 21–29; Kalliola, 1939: 132–135, Table 19, № 3–11). Ass. Salici reticulatae–Trollietum europaei Koroleva et Kopeina ass. nov. hoc loco (Table 7, holotypus — relevé 10 ( m1/16); Fig. 3) with diagnostic species Geranium sylvaticum, Juncus trifidus, Nardus stricta, Salix reticulata,represents species-rich meadows near springs and on gentle slopes, sometimes with patches of low willows and dwarf birch. The association is transitional to the tall-herb shrubs and forests of alliance Mulgedion alpini, class Mulgedio-Aconitetea. To arrange the syntaxa described in Murmansk Region in higher units correctly, we used the first descriptions of following alliances in Fennoscandia: alliance Potentillo–Polygonion vivipari, incl. Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357, Table, Bestanden I–IV) and Polygonum vivparum–Thalictrum alpinum-Soz. (Kalliola, 1939: 132–133, Table 19, № 3–11); alliance Ranunculo–Poion alpinae, incl. Trollius europaeus-soc. (Gjaerevoll, 1950: 420–421, Table XIII, № 1–10); alliance Deschampsio-Anthoxanthion, incl. ass. Deschampsietum flexuosae and ass. Caricetum bigelowii (ibid.: 393–394, Table I, Stands I–V; 396–397, Table II, Stands I, II); alliance Saxifrago stellaris–Oxyrion digynae, incl. ass. Oxyrietum digynae (ibid.: 406–407, Table VI, Stands I–III); alliance Kobresio-Dryadion, incl. Carex rupestris–Encalypta rhabdocarpa sos. (Nordhagen, 1943: 576–577, Table 99, Serie I–III) and аss. Dryadetum octopetalae (Nordhagen, 1955: 76–81, Table III, no. 17–33), as well as descriptions of ass. Polygono vivpari–Thalictretum alpini (Kalliola 1939) Koroleva 2006 from the Barents Sea shore. In total 113 relevés were analyzed with use of Program ExStatR (Novakovskiy, 2016) based on the Non-metric Multidimensional Scaling (NMS), and hierarchical clustering with grouping by arithmetic means UPGMA. In both methods, the Sjørensen-Chekanovsky coefficient was used as a measure of similarity/distance. All relevés represent rather distinctive groups in ordination space (Fig. 4), with few transitional ones. Two well-expressed gradients explain the variation in grasslands and meadows: (1) snow-depth and calcium-availability and (2) height above the sea level, together with steepness of the slope and coarseness of substrata. On the one end of the axis 2 there are communities of the ass. Carici bigelowii–Nardetum strictae (Table 2; Fig. 4, group 3) with diagnostic species Nardus stricta and Diphasiastrum alpinum. They represent closed and species-poor (39 species in syntaxon, 11 species per relevé in average) mono-dominant vegetation in snow-bed depressions, which are water-inundated in the beginning of the growing season, but dry up quickly. Rather compact group of communities of Kobresio-Dryadion (Fig. 4, groups 14 and 15), described by Nordhagen in Ca-rich habitats in Scandinavian mountains, with constant species Dryas octopetala, Saxifraga oppositifolia, Carexrupestris, Alectoria nigricans, A. ochroleuca, Flavocetraria cucullata and F. nivalis occupies an opposite end. Second gradient (axis 1) starts with meadows associated with the moderate snow and moisture conditions in zonal tundra in Murmansk Region (Fig. 4, group 4: Polygono vivpari–Thalictretum alpini; Koroleva, 2006). It finishes with relevés of Gjaerevoll’s (1950) ass. Oxyrietumdigynae (all. Saxifrago stellaris–Oxyrion digynae), which occurs on stony and moist substrata on steep slopes of high Scandinavian ranges (Fig. 4, group 13). Among constant species there are mosses and liverworts Andreaea rupestris, Anthelia juratzkana, Hymenoloma crispulum,hygro-, and mesophytic herbs Epilobium anagallidifolium and Saxifraga stellaris. In close position on the ordination diagram are early snow-beds in Murmansk Region, ass. Salici herbaceae–Caricetum bigelowii, with diagnostic species Alchemilla alpina, Carex bigelowii, Cardaminebellidifolia, Diplophyllum taxifolium, Lophozia wenzelii (Table 4; Fig. 4, group 1). Ass. Anthoxantho alpini–Deschampsietum flexuosae with diagnostic species Anthoxanthum alpinum, Avenella flexuosa (Table 3; Fig. 4, group 2) comprises vegetation in transitional habitats from late snow-beds to moss-blueberry tundra and has large portion of dwarf shrubs of Phyllodoco–Vaccinion myrtilli. On the ordination diagram, these communities differ from Gjaerevoll’s (1950) relevés of Deschampsio-Anthoxanthion (Fig. 4, group 12); they are ecologically similar with snow-bed communities. Central parts of the both gradients are occupied by the meadows of following associations: Hieracio alpini–Caricetum bigelowii (Table 5; Fig. 4, group 8), Potentillo crantzii–Polygonetum vivipari (Fig. 4, group 6) and Salici reticulatae–Trollietum europaei (Table 7; Fig. 4, group 7). All of them belong to alliance Potentillo–Polygonion vivipari (diagnostic species: Anthoxanthum alpinum, Bartsia alpina, Bistorta vivipara, Distichium capillaceum, Luzula spicata, Poa alpina, Potentilla crantzii, Ranunculus acris, Salix reticulata, Sanionia uncinata, Saussurea alpina, Selaginella selaginoides, Silene acaulis, Taraxacum croceum, Trollius europaeus, Veronica alpina, Viola biflora). They represent the richest tundra meadows (to 134 species in association and 41 species in community), with dominance of mesophytic herbs, high number of dwarf-shrubs, presence of mosses and liverworts. The alliance is well presented on the cluster dendrogram (Fig. 5). The first reference to alliance Potentillo–Polygonion vivipari was published by Nordhagen (1937: 37–43) and contained synoptical table and direct reference to Potentilla crantzii–Polygonum viviparum Ass. (Nordhagen, 1928: 356–357) as the most characteristic type of the alliance. So the alliance could be considered effectively and validly published (ICPN: Art. 1, 2b). Since Potentilla crantzii–Polygonum viviparum Ass. represents the only element published with the valid name with direct reference in the original diagnosis of the alliance, it must therefore be accepted as the holotype (ICPN: Art. 18a), and the name should be corrected to Potentillo crantzii–Polygonetum vivipari Nordh. 1928 (ICPN: Art. 41b). Later on, R. Kalliola (1939) and N. Koroleva (2006) also published one syntaxon in this alliance: publication of holotype by Koroleva (2006) is superfluous, because original diagnoses of Nordhagen (1937) is accompanied by clear reference to type association in the paper by Nordhagen (1928) (ICPN: Art. 21). The original diagnosis of Gjaerevoll’s (1950) alliance Ranunculo–Poi
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rastitel''nost'' Rossii
Rastitel''nost'' Rossii Agricultural and Biological Sciences-Plant Science
CiteScore
1.20
自引率
0.00%
发文量
5
期刊介绍: The scientific journal Rastitel''nost'' Rossii is included in the Scopus database. Publisher country is Russia. The main subject areas of published articles are Ecology, Evolution, Behavior and Systematics, Plant Science, Общая биология.
期刊最新文献
Ranunculetum mongolicin — a new association of aquatic vegetation from the Republic of Altai Class Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947 in the Southern Trans-Urals (the steppe zone of Chelyabinsk Region) Vegetation of segde-hypnum and wooded rich fens and swamps on the north border of their distribution in Western Siberia Plant communities of the Sarykum sand massif (Republic of Dagestan) Field mire seminar with international participation in Polistovsky state nature reserve (Pskov Region, Bezhanitsy settlement, September 8–9, 2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1