首页 > 最新文献

Rastitel''nost'' Rossii最新文献

英文 中文
Vegetation of segde-hypnum and wooded rich fens and swamps on the north border of their distribution in Western Siberia 在西伯利亚西部分布的北部边界上的叶状植物和树木繁茂的沼泽和沼泽的植被
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.100
G. Ganasevich, E. Lapshina
The vegetation of sedge-hypnum and forest swamps rich in soil nutrition was studied in “Chistoe Boloto” (Open Mire), located in the low left-bank terrace of the Irtysh River valley in the environs of Tobolsk city (58.25°–58.09°N, 68.15°–68.34°E) near the northern limit of this mire type distribution in Western Siberia. A total of 7 associations, 2 subassociations, 1 variant, and 1 community type are described, of which one association (Hamatocauli vernicosae–Caricetum lasiocarpae) and 2 subassociations (Telypterido palustris–Betuletum pubescentis inops and Thelypteridetum palustris brachythecietosum mildeanae) are introduced as new ones. Communities are assigned to 4 alliances of 3 orders and 2 classes. The class Alnetea glutinosae Br.-Bl. et Tx. ex Weshoff et al. 1946 of coniferous and small-leaved forests of Eurasia includes the order Calamagrostio purpureae–Piceetalia obovatae Lapshina 2010 combining forest-like swamp communities with dark coniferous species in the tree layer, called “sogra” in Siberia, with two associations within 2 alliances in the study area. Ass. Mnio stellari–Pinetum sibiricae Lapshina 2010 (Fig. 2) of the alliance Carici cespitosae–Piceion obovatae Lapshina 2010 includes communities of the dark coniferous sogra. Their considerable geographical remoteness from the main distribution area in the south of the forest zone of Western Siberia and noticeable differences in the species composition allowed to establish within it var. Viola epipsila. Ass. Carici appropinquatae–Pinetum sylvestris Lapshina 2010 (Fig. 3) of the alliance Carici appropinquatae–Laricion sibiricae Lapshina 2010 combines birch–pine herb-tussock sedge communities, rich in soil nutrition, dominated by Carex apropinquata, Thelypteris palustris. The class Scheuchzeria palustris–Caricetea nigrae Tx. 1937 is represented by the alliance Saxifrago-Tomentypnion Lapshina 2010 in the study area. Diverse communities of sedge-hypnum and Menyanthes-low sedge-hypnum fens, which are visually well distinguished in the vegetation cover by the dominance of different sedge species (Сarex diandra, C. dioica, C. limosa, C. rostrata) and Menyanthes, correspond well in their floristic composition to the diagnosis of the ass. Brachythecio mildeanae–Caricetum limosae Lapshina 2010 (Fig. 6) described on the hypnum fens in the southeast of Western Siberia. With the distance from the Tobolsk slope and gradual reduction of the groundwater influence, the domination in Menyanthes-low sedge-hypnum communities gradually flows from the ass. Brachythecio mildeanae–Caricetum limosae to Carex lasiocarpa — ass. Hamatocauli vernicosae–Caricetum lasiocarpae ass. Nov (Fig. 7). A characteristic feature of the studied mire is the wide distribution of sedge-fern and fern communities among low sedge-hypnum fens dominated by Carex lasiocarpa and Thelypteris palustris, which are assigned to associations Thelypterido–Caricetum lasiocarpae Lapshina 2010 (Fig. 8) and Thelypteridetum palustris Lapshi
本文研究了位于托博尔斯克市近郊额尔齐斯河河谷左岸低阶地(58.25°-58.09°N, 68.15°-68.34°E)的“Chistoe Boloto”(开放沼泽)中土壤营养丰富的莎草沼和森林沼泽植被。共描述了7个群落、2个亚群落、1个变异群落和1个群落类型,其中新介绍了1个群落(Hamatocauli vernicosae-Caricetum lasiocarpae)和2个亚群落(Telypterido palustri - betuletum pubescentis inops和Thelypteridetum palustris brachythecettosum mildeanae)。社区被分配到3个命令和2个类的4个联盟中。谷氨酸茶属Br.-Bl。et txx . ex Weshoff etal . 1946对欧亚大陆针叶林和小叶林的研究包括Calamagrostio purpureae-Piceetalia obovatae Lapshina 2010目,该目将森林状沼泽群落与树层中的深色针叶林物种(西伯利亚称为“sogra”)结合在一起,在研究区域的2个联盟中有两个协会。2010年的黑松林-西伯利亚松林(图2)包括暗针叶草群落。它们在地理上远离西伯利亚西部森林带南部的主要分布区域,并且在物种组成上有明显的差异,这使得在其中建立了Viola epipsila.Ass.变种。加林区-西伯利亚松林(laricion sibiricae Lapshina 2010)联盟的加林区-西林松林(Carici appinquatae - pinetum sylvestris Lapshina 2010)(图3)结合了桦木-松草-毛毡莎草群落,土壤营养丰富,以加林区毛草(Carex appropinquata)、palustris Thelypteris为主。研究区域的Scheuchzeria palustris-Caricetea nigrae Tx. 1937类以Saxifrago-Tomentypnion Lapshina 2010为代表。不同的莎草种类(Сarex diandra, C. dioica, C. limosa, C. rostrata)和Menyanthes在植被覆盖上的优势可以很好地区分出莎草和Menyanthes-low sedge-hypnum fens的不同群落,它们的区系组成与在西西伯利亚东南部hypnum fens上描述的Brachythecio mildeanae-Caricetum limosae Lapshina 2010(图6)的诊断非常吻合。随着离Tobolsk边坡距离的增加和地下水影响的逐渐减弱,menyanthus -low莎草群落的优势逐渐由Brachythecio mildeanae caricetum limosae向Carex lasiocarpa -转移研究沼泽的一个特征是在以苔草和palyteris palustris为主的低苔草沼中广泛分布苔类植物和蕨类群落,并将其归属于thelypterididum - carictum lasiocarpae Lapshina 2010(图8)和Thelypteridetum palustris Lapshina et al. 2018(图9)。后者被建立为亚底。短蛸亚目。11 .根据L. G. Ramenskiy生态尺度(Ramensky et al., 1956)对沼泽生境进行了比较。计算了各相关区域的供水生态指标(等级)和营养状况。沼泽生境的生态排序(图10)显示了矿物营养(y轴)和供水(湿度)(x轴)的值。根据矿质营养的尺度,t个群落存在于一个狭窄的生态范围内,对应于中营养化条件(6.5 ~ 9.0级)。这是由于在高电导率值和接近中性的介质(EC= 180-430;pH= 6.5-7.5),土壤营养丰富的泥炭土氮磷含量较低(Wassen et al., 2005)。根据湿度尺度,研究植被可分为亲水(77 ~ 88度)、亚亲水(89 ~ 94度)和亲气(95 ~ 103度)3类生境群落,与泥沼植被的主要类别相对应。第一组包括两个联盟的木本沼泽的Alnetea glutinosae类的句法,它们出现在适度潮湿的栖息地。低桦树沼泽群落的类Alnetea glutinosae是常见的高水饱和的栖息地。Scheuchzerio-Caricetea nigrae类的低莎草类、蕨类和莎草类沼泽的句法群在最潮湿的沼泽栖息地中很常见,通常与泥炭沉积物中埋有高水位的水平面有关。使用t-SNE方法对分类结果和句法排序进行确认,该方法允许在平面上显示多维超空间。排序图的右侧(图11)显示了分化良好的Scheuchzerio-Caricetea类低莎草沼沼群落。具有白刺草优势的罕见莎草群落分布较远,与泉水出口相连。 本文研究了位于托博尔斯克市近郊额尔齐斯河河谷左岸低阶地(58.25°-58.09°N, 68.15°-68.34°E)的“Chistoe Boloto”(开放沼泽)中土壤营养丰富的莎草沼和森林沼泽植被。共描述了7个群落、2个亚群落、1个变异群落和1个群落类型,其中新介绍了1个群落(Hamatocauli vernicosae-Caricetum lasiocarpae)和2个亚群落(Telypterido palustri - betuletum pubescentis inops和Thelypteridetum palustris brachythecettosum mildeanae)。社区被分配到3个命令和2个类的4个联盟中。谷氨酸茶属Br.-Bl。et txx . ex Weshoff etal . 1946对欧亚大陆针叶林和小叶林的研究包括Calamagrostio purpureae-Piceetalia obovatae Lapshina 2010目,该目将森林状沼泽群落与树层中的深色针叶林物种(西伯利亚称为“sogra”)结合在一起,在研究区域的2个联盟中有两个协会。2010年的黑松林-西伯利亚松林(图2)包括暗针叶草群落。它们在地理上远离西伯利亚西部森林带南部的主要分布区域,并且在物种组成上有明显的差异,这使得在其中建立了Viola epipsila.Ass.变种。加林区-西伯利亚松林(laricion sibiricae Lapshina 2010)联盟的加林区-西林松林(Carici appinquatae - pinetum sylvestris Lapshina 2010)(图3)结合了桦木-松草-毛毡莎草群落,土壤营养丰富,以加林区毛草(Carex appropinquata)、palustris Thelypteris为主。研究区域的Scheuchzeria palustris-Caricetea nigrae Tx. 1937类以Saxifrago-Tomentypnion Lapshina 2010为代表。不同的莎草种类(Сarex diandra, C. dioica, C. limosa, C. rostrata)和Menyanthes在植被覆盖上的优势可以很好地
{"title":"Vegetation of segde-hypnum and wooded rich fens and swamps on the north border of their distribution in Western Siberia","authors":"G. Ganasevich, E. Lapshina","doi":"10.31111/vegrus/2023.46.100","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.100","url":null,"abstract":"The vegetation of sedge-hypnum and forest swamps rich in soil nutrition was studied in “Chistoe Boloto” (Open Mire), located in the low left-bank terrace of the Irtysh River valley in the environs of Tobolsk city (58.25°–58.09°N, 68.15°–68.34°E) near the northern limit of this mire type distribution in Western Siberia. A total of 7 associations, 2 subassociations, 1 variant, and 1 community type are described, of which one association (Hamatocauli vernicosae–Caricetum lasiocarpae) and 2 subassociations (Telypterido palustris–Betuletum pubescentis inops and Thelypteridetum palustris brachythecietosum mildeanae) are introduced as new ones. Communities are assigned to 4 alliances of 3 orders and 2 classes. The class Alnetea glutinosae Br.-Bl. et Tx. ex Weshoff et al. 1946 of coniferous and small-leaved forests of Eurasia includes the order Calamagrostio purpureae–Piceetalia obovatae Lapshina 2010 combining forest-like swamp communities with dark coniferous species in the tree layer, called “sogra” in Siberia, with two associations within 2 alliances in the study area. Ass. Mnio stellari–Pinetum sibiricae Lapshina 2010 (Fig. 2) of the alliance Carici cespitosae–Piceion obovatae Lapshina 2010 includes communities of the dark coniferous sogra. Their considerable geographical remoteness from the main distribution area in the south of the forest zone of Western Siberia and noticeable differences in the species composition allowed to establish within it var. Viola epipsila. Ass. Carici appropinquatae–Pinetum sylvestris Lapshina 2010 (Fig. 3) of the alliance Carici appropinquatae–Laricion sibiricae Lapshina 2010 combines birch–pine herb-tussock sedge communities, rich in soil nutrition, dominated by Carex apropinquata, Thelypteris palustris. The class Scheuchzeria palustris–Caricetea nigrae Tx. 1937 is represented by the alliance Saxifrago-Tomentypnion Lapshina 2010 in the study area. Diverse communities of sedge-hypnum and Menyanthes-low sedge-hypnum fens, which are visually well distinguished in the vegetation cover by the dominance of different sedge species (Сarex diandra, C. dioica, C. limosa, C. rostrata) and Menyanthes, correspond well in their floristic composition to the diagnosis of the ass. Brachythecio mildeanae–Caricetum limosae Lapshina 2010 (Fig. 6) described on the hypnum fens in the southeast of Western Siberia. With the distance from the Tobolsk slope and gradual reduction of the groundwater influence, the domination in Menyanthes-low sedge-hypnum communities gradually flows from the ass. Brachythecio mildeanae–Caricetum limosae to Carex lasiocarpa — ass. Hamatocauli vernicosae–Caricetum lasiocarpae ass. Nov (Fig. 7). A characteristic feature of the studied mire is the wide distribution of sedge-fern and fern communities among low sedge-hypnum fens dominated by Carex lasiocarpa and Thelypteris palustris, which are assigned to associations Thelypterido–Caricetum lasiocarpae Lapshina 2010 (Fig. 8) and Thelypteridetum palustris Lapshi","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant communities of the Sarykum sand massif (Republic of Dagestan) Sarykum沙地植物群落(达吉斯坦共和国)
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.3
A. Korolyuk, A. Laktionov, R. Murtazaliev
Open sands are usual elements of subarid and arid landscapes in Eurasia. The unique psammophytic flora makes an important contribution to the regions’ biological diversity. From the syntaxonomical point of view, psammophytic vegetation of south-east European part of Russia still poorly explored. The Sarykum sand massif is a unique object, due to its location in piedmonts of the Caucasus at a considerable distance from vast sands of Terek-Kum and Caspian lowlands (Fig. 1, 2). Our study presents the results of the analysis of 66 relevés. The data set was stored and processed in IBIS 7.2 software. As a result of performing hierarchical cluster analysis using Ward’s method, dendrogram was constructed reflecting the similarity of the relevés. Sokal/Sneath coefficient No. 1 which considers positive and negative species concurrences was used. Cluster analysis made it possible to reveal general differentiation patterns in psammophytic vegetation (Fig. 3). As a result, the relevés set was divided into two clusters differing in 28 species (Table 1). Cluster A represents poor of species and sparse communities on not fixed sands — in average 9 species per relevé and 18 % of the plants cover. Cluster B includes coenoses of fixed sands, with an average richness of 23 species and cover of 27 %. The studied communities belong to the class Festucetea vaginatae Soó ex Vicherek 1972, which represents the sandy steppes. It is distributed in the forest-steppe and steppe zones of Eastern and South-Eastern Europe, as well as in the south of Western Siberia and Northern Kazakhstan. The class includes the only order Festucetalia vaginatae Soó 1957. Psammophytic vegetation described from various regions of southern Russia belongs to the alliance Festucion beckeri Vicherek 1972, but none of its diagnostic species was noted in relevés. Comparison of our data with the associations described in the class on the territory of Russia and Ukraine allowed us to identify a group of species differentiating the psammophytic vegetation of the Sarykum massif: Artemisia tschernieviana, Astragalus brachylobus, Asperula diminuta, Centaurea arenaria, Syrenia siliculosa, Thesium maritimum, Tragopogon dasyrhynchus ssp. daghestanicus. These species can become the basis for the diagnosis of a new alliance. Its definition will be possible as a result of comparative analysis of psammophytic vegetation of the southeast of European Russia, primarily of the Caspian and Terek-Kum sands. Аss. Senecioni schischkiniani–Artemisietum tschernievianae ass. nov. (Table 2, relevés 1–18). Holotypus — relevé 1 in Table 2. (field no. 21-004), Republic of Dagestan, Kumtorkalinsky region, WSW from Korkmaskala village, Sarykum sands, leveled area in the upper part of the dune, 43.00751°N, 47.23290°E, 12.05.2021, author — A. Yu. Korolyuk. Diagnostic species (D. s.): Artemisia tschernieviana, Senecio schischkinianus, Melilotus polonicus, Tragopogon dasyrhynchus ssp. daghestanicus. Communities are found in the ce
开阔的沙地是欧亚大陆亚干旱和干旱景观的常见元素。独特的沙生植物区系为该地区的生物多样性做出了重要贡献。从分类学的角度来看,俄罗斯东南欧地区的沙生植被研究仍然很少。Sarykum沙块是一个独特的对象,因为它位于高加索山脉的山麓,与Terek-Kum和里海低地的巨大沙子有相当大的距离(图1,2)。我们的研究提出了66个相关样本的分析结果。数据集在IBIS 7.2软件中存储和处理。利用Ward的方法进行层次聚类分析,构建了反映相关变量相似性的树状图。Sokal/Sneath系数1考虑了正、负的物种并发性。聚类分析可以揭示沙生植被的一般分化模式(图3)。结果,相关的群落被分为两个不同的28个物种的聚类(表1)。聚类a代表了不固定沙地上的物种和稀疏群落的贫乏-平均每个相关区域有9个物种和18%的植物覆盖。群B包括固定沙群落,平均丰富度为23种,覆盖面积为27%。所研究的群落属于Festucetea vaginatae Soó ex Vicherek 1972,代表了沙质草原。它分布在欧洲东部和东南部的森林草原和草原地带,以及西伯利亚西部南部和哈萨克斯坦北部。这个类包括唯一的目的阴道Festucetalia Soó 1957。在俄罗斯南部不同地区所描述的沙生植被属于Festucion beckeri Vicherek 1972,但在相关文献中没有发现其诊断种。将我们的数据与课堂上在俄罗斯和乌克兰领土上描述的关联进行比较,使我们能够识别出一组区分Sarykum块地沙生植被的物种:Artemisia tscherieviana, Astragalus brachylobus, Asperula diminuta, Centaurea arenaria, Syrenia silulosa, Thesium marium, Tragopogon dasyrhynchus ssp。daghestanicus。这些物种可以成为诊断新联盟的基础。对俄罗斯欧洲部分东南部,主要是里海和Terek-Kum sands.Аss的沙生植被进行比较分析后,可以对其进行定义。(表2,相关文献1-18)。表2中Holotypus相关1。(字段。21-004),达吉斯坦共和国,Kumtorkalinsky地区,WSW来自Korkmaskala村,Sarykum沙,沙丘上部平整区域,43.00751°N, 47.23290°E, 12.05.2021,作者- A. Yu。Korolyuk。诊断种:黄花蒿(Artemisia tscherieviana)、松鸡叶蒿(Senecio schischkinianus)、长尾草蒿(Melilotus polonicus)、大尾角甲(Tragopogon dasyrhynchus)。daghestanicus。社区位于Sarykum地块的中心,最开放的部分。它们占据斜坡,以及以活沙缠绕为特征的平面区域(图4)。总状雷蒿(Leymo racemose - artemisietum tscherievianae), 11 .(表2,相关文献19 - 26),表2中相关文献19。(字段。21-026),达吉斯坦共和国,Kumtorkalinsky地区,Korkmaskala村WSW, Sarykum沙块,沙丘平缓的北坡,43.01028°N, 47.23391°E, 13.05.2021,作者- A. Yu。Korolyuk。博士论文:黄花蒿,总状羊草。该协会代表了在地块中央高架部分广泛分布的先锋植物。它们形成于被沙子积极覆盖的斜坡上(图5)。群落稀疏,覆盖度为10 - 25%,唯一的优势是青蒿tschernieviana.Аss。11月1日,高加索菊科植物-雄性菊科植物(表3,相关数据1-31)。表3中Holotypus相关1。(字段。21-030),达吉斯坦共和国,Kumtorkalinsky地区,WSW来自Korkmaskala村,Sarykum沙丘,沙丘北麓小山丘缓坡,43.0112°N, 47.2333°E, 13.05.2021,作者- A. Yu。Korolyuk。博士论文:易碎草、紫蒿、乌拉尔头蒿、半蜡蜡蒿、顺高加索Jurinea、苜蓿、Pleconax conica、Scorzonera bibersteinii、Stipa borysthenica、Syrenia silulosa、teucium orientale、Thesium marium。该协会的群落代表了Sarykum地块更固定的砂的植被背景类型。它们生长在平坦的地区、缓坡的丘陵和山脊上,沿着古老的风洞底部生长(图6、7)。乌拉尔头蒿(Cephalaria uralensis)占多数,而易碎草(Agropyron fragile)、紫蒿(Artemisia tscherieviana)、大戟(Euphorbia seguieriana)、苍鹭(Scorzonera biebersteinii)、锡卡(Secale sylvestre)、针茅(Stipa borysthenica)、东方桦(Teucrium orientale)、紫茎草(Ziziphora serpyllacea)占较少。 作为关联的一部分,我们区分了三种变体:var. typica(表3,op. 1-16)广泛分布于Sarykum沙丘的北部和东北部,var. artemisia marschalliana(表3,op. 17-24)代表了最丰富的沙质草原群落,var. inops(表3,op. 25-31)仅在地块南部与铁路相邻的路段上发现。在研究区域描述了五个群落。Com。总状羊草占据小块,通常在开阔的沙地和山艾草丛之间形成狭窄的条状(图8)。在山脊斜坡上的地块中部描述了Eremosparton aphyllum(图9)。在一座小沙山的山顶上观察到一株小叶蒜(caligonum aphyllum)(图10)。Com。沙柳(Salix caspica)生长在沙丘上,是高2 ~ 3米的大型无性系柳树。Com。白茅在地块西南部沿斜坡和洼地底部登记(图11)。关于阴道蒿科和耳蒿科的分类问题是一个有趣的分类学问题。在欧洲植被检查表(Mucina et al., 2016)中,代表沙生植被的Artemisietea tschernievianae Golub 1994作为同义词被划入第二类。我们对阿斯特拉罕、萨拉托夫和罗斯托夫地区描述的达吉斯坦社区和三类句法进行了形式化分析(图12)。聚类分析将该属植物分为两个类群,分别对应于蒿类(A)和阴道蒿类(B)。蒿类的沙漠结系与草属(A)联合在一起。这一类群是Artemisietea tschernievianae类的原型,因此后者应该被认为是Artemisietea lerchianae类的同义词,代表沙漠和沙漠草原(Korolyuk, Laktionov, 2021)。1994年,与其他沙草纲合在一起的沙草草原和固定沙的植被。Sarykum砂体的植被以中亚典型的原始植物群落和众多植物物种为代表。此外,约有20种被列入区域和联邦红皮书的植物生长在达吉斯坦保护区的“Sarykum沙丘”群及其保护区的领土上。尽管有保护制度
{"title":"Plant communities of the Sarykum sand massif (Republic of Dagestan)","authors":"A. Korolyuk, A. Laktionov, R. Murtazaliev","doi":"10.31111/vegrus/2023.46.3","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.3","url":null,"abstract":"Open sands are usual elements of subarid and arid landscapes in Eurasia. The unique psammophytic flora makes an important contribution to the regions’ biological diversity. From the syntaxonomical point of view, psammophytic vegetation of south-east European part of Russia still poorly explored. The Sarykum sand massif is a unique object, due to its location in piedmonts of the Caucasus at a considerable distance from vast sands of Terek-Kum and Caspian lowlands (Fig. 1, 2). Our study presents the results of the analysis of 66 relevés. The data set was stored and processed in IBIS 7.2 software. As a result of performing hierarchical cluster analysis using Ward’s method, dendrogram was constructed reflecting the similarity of the relevés. Sokal/Sneath coefficient No. 1 which considers positive and negative species concurrences was used. Cluster analysis made it possible to reveal general differentiation patterns in psammophytic vegetation (Fig. 3). As a result, the relevés set was divided into two clusters differing in 28 species (Table 1). Cluster A represents poor of species and sparse communities on not fixed sands — in average 9 species per relevé and 18 % of the plants cover. Cluster B includes coenoses of fixed sands, with an average richness of 23 species and cover of 27 %. The studied communities belong to the class Festucetea vaginatae Soó ex Vicherek 1972, which represents the sandy steppes. It is distributed in the forest-steppe and steppe zones of Eastern and South-Eastern Europe, as well as in the south of Western Siberia and Northern Kazakhstan. The class includes the only order Festucetalia vaginatae Soó 1957. Psammophytic vegetation described from various regions of southern Russia belongs to the alliance Festucion beckeri Vicherek 1972, but none of its diagnostic species was noted in relevés. Comparison of our data with the associations described in the class on the territory of Russia and Ukraine allowed us to identify a group of species differentiating the psammophytic vegetation of the Sarykum massif: Artemisia tschernieviana, Astragalus brachylobus, Asperula diminuta, Centaurea arenaria, Syrenia siliculosa, Thesium maritimum, Tragopogon dasyrhynchus ssp. daghestanicus. These species can become the basis for the diagnosis of a new alliance. Its definition will be possible as a result of comparative analysis of psammophytic vegetation of the southeast of European Russia, primarily of the Caspian and Terek-Kum sands. Аss. Senecioni schischkiniani–Artemisietum tschernievianae ass. nov. (Table 2, relevés 1–18). Holotypus — relevé 1 in Table 2. (field no. 21-004), Republic of Dagestan, Kumtorkalinsky region, WSW from Korkmaskala village, Sarykum sands, leveled area in the upper part of the dune, 43.00751°N, 47.23290°E, 12.05.2021, author — A. Yu. Korolyuk. Diagnostic species (D. s.): Artemisia tschernieviana, Senecio schischkinianus, Melilotus polonicus, Tragopogon dasyrhynchus ssp. daghestanicus. Communities are found in the ce","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ranunculetum mongolicin — a new association of aquatic vegetation from the Republic of Altai 蒙古毛茛——阿尔泰共和国水生植被的新类群
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.18
L. Kipriyanova
In the framework of the project “Classification of Vegetation of the Russian Federation” (Plugatar et al., 2020; Kipriyanova et al., 2021), a revision of the modern coenotic diversity of Russia, including aquatic vegetation, is being carried out. It turned out that the types of some plant communities have not yet been described, including the association with the dominance of the Ranunculus mongolicus (Krylov) Serg. Ranunculus mongolicus was first reported in the Flora of West Siberia (Flora..., 1931) by P. N. Krylov as a subspecies of the water buttercup R. aquatilis ssp. mongolicus Kryl. (Krylov, 1931), L. P. Sergievskaya raised the taxon rank to species (Sergievskaya, 1964). In the modern monographic treatment of aquatic buttercups, this taxon is given at the species rank (Wiegleb et al., 2017). It indicates that Ranunculus mongolicus is habitually similar to R. aquatilis, although smaller in all parts. Lamellar leaves are deeply dissected, peduncles are long, all parts of the plant are densely hairy. In arid regions, it behaves like an annual (Wiegleb et al., 2017). In the course of expedition work in 2020 in the Ulagan district of the Republic of Altai, five geobotanical descriptions of communities dominated by the Mongolian buttercup (see Table) were performed, and it was decided to describe a new association. The classification was carried out on the principles of the ecological-floristic approach of J. Braun-Blanquet in accordance with the Code of Phytosociological Nomenclature (Theurillat et al., 2021). Ass. Ranunculetum mongolici ass. nov. unites the communities dominated by the Mongolian buttercup (Fig. 1, 2). The diagnostic species is Ranunculus mongolicus (= Batrachium mongolicum (Krylov) Krecz.). Nomenclature type of association (holotypus hoc loco) — relevé No 5 in the Table. Republic of Altai, Ulagan district, vicinity of the mouth of the Chulyshman River, the oxbow lake of the Chulyshman River, 21.08.2020, 51.33130 N 87.73750 E. Author — L. M. Kipriyanova. We attributed the new association to the alliance Batrachion aquatilis Passarge 1964 of the order Callitricho hamulatae–Ranunculetalia aquatilis Passarge ex Theurillat in Theurillat et al. 2015 of the class Potamogetonetea Klika in Klika et Novák 1941. The range of the community apparently coincides with the range of the species. In Asia, R. mongolicus is found in Siberia, the Russian Far East, Kyrgyzstan, Afghanistan, Mongolia, China, and Nepal (Wiegleb et al., 2017). It is found along the west coast of North America where it is confused with R. aquatilis (as R. aquatilis var. aquatilis and R. aquatilis var. hispidulus); likewise, most South American “R. aquatilis” refers to R. mongolicus. (Wiegleb et al., 2017). In Eastern Siberia, R. mongolicus is rare and does not form communities (Chepinoga, 2015). In addition to the Mongolian buttercup communities from Ulagan district, there are publicly available photographs of cenoses with R. mongolicus taken by A. I. Pyak in the
在“俄罗斯联邦植被分类”项目框架内(Plugatar等人,2020;Kipriyanova et al., 2021),正在对包括水生植被在内的俄罗斯现代生态多样性进行修订。结果表明,一些植物群落的类型尚未被描述,包括与蒙古毛茛(Krylov) Serg的优势关系。蒙古毛茛首次报道于西伯利亚西部植物区系(植物区系)。(P. N. Krylov, 1931)作为水毛茛的亚种。mongolicus Kryl。(Krylov, 1931), L. P. Sergievskaya将分类单元等级提升到种(Sergievskaya, 1964)。在水生毛茛的现代专著处理中,该分类单元按物种级别给出(Wiegleb et al., 2017)。表明蒙古毛茛与水杨毛茛在习性上相似,但各部位均较小。片状叶深裂,花序梗长,植株各部分密有毛。在干旱地区,它表现得像一年一次(Wiegleb et al., 2017)。在2020年阿尔泰共和国乌拉甘地区的考察工作中,对蒙古毛茛为主的群落进行了5次地学描述(见表),并决定描述一个新的群落。分类依据J. Braun-Blanquet的生态-区系方法原则,按照《植物社会学命名法》(Theurillat et al., 2021)进行。蒙古毛茛(ranunculletum mongolici ass. 11 .)将蒙古毛茛(Mongolian buttercup)为主的群落联合起来(图1,2)。诊断种为蒙古毛茛(= Batrachium mongolicum (Krylov) Krecz.)。关联的命名类型(holotypus hoc loco) -表中第5项相关。阿尔泰共和国,乌拉甘区,丘利什曼河河口附近,丘利什曼河的牛牛湖,2020年8月21日,51.33130 N 87.73750 E.作者- L. M. Kipriyanova。我们将这一新的关联归因于calitricho hamulatae目的Batrachion aquatilis Passarge 1964 - ranunculletalia aquatilis Passarge ex Theurillat in Theurillat etal . 2015 of Klika et Novák 1941中的Potamogetonetea Klika类。群落的分布范围显然与物种的分布范围一致。在亚洲,蒙古鼠见于西伯利亚、俄罗斯远东地区、吉尔吉斯斯坦、阿富汗、蒙古、中国和尼泊尔(Wiegleb et al., 2017)。它被发现在北美西海岸,在那里它被与水仙混淆(如水仙和水仙);同样,大多数南美“R”。“水曲柳”指的是蒙古鼠。(Wiegleb et al., 2017)。在东西伯利亚,蒙古鼠是罕见的,不形成群落(Chepinoga, 2015)。除了乌拉干地区的蒙古毛茛群落外,还有A. I. Pyak在阿尔泰共和国的ko什- agach地区(Kyzylchin (Buguzun)河流域,49.992579°N, 89.088472°E, 2007年7月15日,https://www.inaturalist.org/observations/99636689)拍摄的蒙古毛茛与蒙古毛茛的公开照片(见图3)。O. Kopylov-Guskov与图瓦共和国(Mongun-Taiginskiy区,50.180458°N, 90.136025°E, 2016年7月15日,https://www.inaturalist.org/observations/65270151)的蒙古毛凤花树丛(见图4),如a . L. Ebel摄于克拉斯诺亚尔斯克地区(Kuraginskiy区,Kuragino村附近,图巴河河道的泥岸,18.07.2018,53.85932°N, 92.60829°E, https://www.plantarium.ru/page/image/id/719518.html)(见图5)。蒙古毛茛在泰米尔半岛(克拉斯诺亚尔斯克地区,哈坦加河流域,马拉亚巴拉克尼亚牛轭湖,2001年8月22日,http://byrranga.ru/ranunculaceae/batrachium_aquatile/index.htm)形成群落(见图6)。因此,目前有可能谈论来自阿尔泰共和国,图瓦共和国和克拉斯诺亚尔斯克地区的蒙古毛茛群落。在阿尔泰共和国,联合群落局限于淹没生态环境,主要是矿物(粘土质和砂质)粉质基质和深度为20 - 60 cm的阿尔泰低山带和高山带的中营养型和低营养型冷水库,这使得有可能将该联合归因于Potamogetonion graminei Westhoff et Den Held 1969结合营养贫乏(中营养型)根系大型植物植被的联盟。有时营养不良的)山区浅水淡水水体(Westhoff和Den Held, 1969;Mucina et al., 2016)。然而,整个分布区域的群落生态特征尚不清楚,因此我们暂时将其保留在毛茛目水陆蕨(Batrachion aquatilis)联盟。
{"title":"Ranunculetum mongolicin — a new association of aquatic vegetation from the Republic of Altai","authors":"L. Kipriyanova","doi":"10.31111/vegrus/2023.46.18","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.18","url":null,"abstract":"In the framework of the project “Classification of Vegetation of the Russian Federation” (Plugatar et al., 2020; Kipriyanova et al., 2021), a revision of the modern coenotic diversity of Russia, including aquatic vegetation, is being carried out. It turned out that the types of some plant communities have not yet been described, including the association with the dominance of the Ranunculus mongolicus (Krylov) Serg. Ranunculus mongolicus was first reported in the Flora of West Siberia (Flora..., 1931) by P. N. Krylov as a subspecies of the water buttercup R. aquatilis ssp. mongolicus Kryl. (Krylov, 1931), L. P. Sergievskaya raised the taxon rank to species (Sergievskaya, 1964). In the modern monographic treatment of aquatic buttercups, this taxon is given at the species rank (Wiegleb et al., 2017). It indicates that Ranunculus mongolicus is habitually similar to R. aquatilis, although smaller in all parts. Lamellar leaves are deeply dissected, peduncles are long, all parts of the plant are densely hairy. In arid regions, it behaves like an annual (Wiegleb et al., 2017). In the course of expedition work in 2020 in the Ulagan district of the Republic of Altai, five geobotanical descriptions of communities dominated by the Mongolian buttercup (see Table) were performed, and it was decided to describe a new association. The classification was carried out on the principles of the ecological-floristic approach of J. Braun-Blanquet in accordance with the Code of Phytosociological Nomenclature (Theurillat et al., 2021). Ass. Ranunculetum mongolici ass. nov. unites the communities dominated by the Mongolian buttercup (Fig. 1, 2). The diagnostic species is Ranunculus mongolicus (= Batrachium mongolicum (Krylov) Krecz.). Nomenclature type of association (holotypus hoc loco) — relevé No 5 in the Table. Republic of Altai, Ulagan district, vicinity of the mouth of the Chulyshman River, the oxbow lake of the Chulyshman River, 21.08.2020, 51.33130 N 87.73750 E. Author — L. M. Kipriyanova. We attributed the new association to the alliance Batrachion aquatilis Passarge 1964 of the order Callitricho hamulatae–Ranunculetalia aquatilis Passarge ex Theurillat in Theurillat et al. 2015 of the class Potamogetonetea Klika in Klika et Novák 1941. The range of the community apparently coincides with the range of the species. In Asia, R. mongolicus is found in Siberia, the Russian Far East, Kyrgyzstan, Afghanistan, Mongolia, China, and Nepal (Wiegleb et al., 2017). It is found along the west coast of North America where it is confused with R. aquatilis (as R. aquatilis var. aquatilis and R. aquatilis var. hispidulus); likewise, most South American “R. aquatilis” refers to R. mongolicus. (Wiegleb et al., 2017). In Eastern Siberia, R. mongolicus is rare and does not form communities (Chepinoga, 2015). In addition to the Mongolian buttercup communities from Ulagan district, there are publicly available photographs of cenoses with R. mongolicus taken by A. I. Pyak in the ","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rare plant communities of the ass. Moliniо caeruleae–Trollietum europaei ass. nov. in the Khibiny Mountains (Kola Peninsula) 科拉半岛希比尼山区molinicaeruleae - trolietum europaei ass. 11 .的珍稀植物群落
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.93
E. Kopeina, N. Koroleva
Mountain tundra meadows with dominance of Molinia caerulea were found in the Khibiny Mountains (Kola Peninsula) (Fig. 1) and described based on the Braun-Blanquet approach. Ass. Molinio caeruleae–Trollietum europaei ass. nov. (Fig. 2, Table, holotypus — relevé 7, 67.611327° N, 33.61316° E; 530 m a. s. l.) is ascribed to the alliance Potentillo–Polygonion vivipari Nordh. 1937, order Epilobio lactiflori–Geranietalia sylvatici Michl, Dengler et Huck 2010, and class Mulgedio-Aconitetea Hadač et Klika in Klika et Hadač 1944. The diagnostic species are Achillea apiculata, Dianthus superbus, Festuca ovina, Geranium sylvaticum, Melica nutans, Molinia caerulea, Trollius europaeus, Vaccinium myrtillus. The undergrowth layer is sparse and composed with Betula nana, Cotoneaster cinnabarinus, Juniperus sibirica. In the upper layer (about 0.5–0.8 m high) most abundant are tall herbs (Molinia caerulea, Dianthus superbus, Geranium sylvaticum, Trollius europaeus and Cirsium heterophyllum). Lower layer (0.1–0.3 m high) is composed with low herbs (Anthoxanthum alpinum, Bistorta vivipara, Epilobium lactiflorum, E. hornemannii, Festuca ovina, Veronica alpina, Viola biflora, V. canina subsp. montana) and dwarf shrubs (Empetrum hermaphroditum, V. uliginosum, V. myrtillus). Ground layer is prostrate and consists of Sciuro-hypnum starkei, S. reflexum, Sanionia uncinata, Bryum spp. and Polytrichum spp. Association comunities occupy rather large areas and are located above the tree line and in the lower part of the mountain-tundra belt, at 410–540 m a. s. l., on well-moistened steep (45–50°) rocky slopes, exposed to southwest and southeast, near groundwater outlets or in places of late snowmelt. Probably the association is of relic nature and marks the tree line of the warmest Holocene period. Rich of species, including Red Data Book Cotoneaster cinnabarinus, Epilobium lactiflorum, Veronica fruticans, it is a value habitat type «E2.3 Mountain hay meadow» in the Kola Peninsula.
khibini山脉(Kola半岛)的山地苔原草甸以Molinia caerulea为优势(图1),并基于Braun-Blanquet方法进行描述。Molinio caeruleae-Trollietum europaei Ass. nov.(图2,表,holotypus - relevant 7, 67.611327°N, 33.61316°E;(530m a. s. l.)归属于Potentillo-Polygonion vivipari Nordh. 1937, Epilobio lactiflori-Geranietalia sylvatici Michl, Dengler et Huck 2010,以及mulgedeo - aconitetea hadaseet Klika (Klika et hadase1944)中的mulgedeo - aconitetea hadaseet Klika。诊断种有细叶菊、石竹、羊茅、天竺葵、美耳香、毛蕊草、欧金莲、桃金娘。林下层稀疏,以桦树、朱砂、西伯利亚杜松为主。在上层(约0.5-0.8 m高)最丰富的是高大的草本植物(Molinia caerulea, Dianthus superbus, Geranium sylvamcum, Trollius europaeus和Cirsium heterophyllum)。下层(高0.1-0.3 m)由低矮的草本植物组成(花青草、活花青草、毛叶草、牛角草、羊蹄草、山茱萸、双花堇菜、犬堇菜亚种)。蒙大拿)和矮灌木(Empetrum hermaphroditum, V. uliginosum, V. myrtillus)。地面层匍匐,由山-冻土带树线以上和山-冻土带的下部,海拔410-540 m,在湿润的陡峭(45-50°)岩坡上,分布在西南和东南,靠近地下水出水口或后期融雪的地方,群落面积较大。该组合可能是遗迹性质的,标志着全新世最温暖时期的树线。物种丰富,有红皮书Cotoneaster cinnabarinus、Epilobium lactiflorum、Veronica fruticans等,属科拉半岛价值生境类型“E2.3山地干草草甸”。
{"title":"Rare plant communities of the ass. Moliniо caeruleae–Trollietum europaei ass. nov. in the Khibiny Mountains (Kola Peninsula)","authors":"E. Kopeina, N. Koroleva","doi":"10.31111/vegrus/2023.46.93","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.93","url":null,"abstract":"Mountain tundra meadows with dominance of Molinia caerulea were found in the Khibiny Mountains (Kola Peninsula) (Fig. 1) and described based on the Braun-Blanquet approach. Ass. Molinio caeruleae–Trollietum europaei ass. nov. (Fig. 2, Table, holotypus — relevé 7, 67.611327° N, 33.61316° E; 530 m a. s. l.) is ascribed to the alliance Potentillo–Polygonion vivipari Nordh. 1937, order Epilobio lactiflori–Geranietalia sylvatici Michl, Dengler et Huck 2010, and class Mulgedio-Aconitetea Hadač et Klika in Klika et Hadač 1944. The diagnostic species are Achillea apiculata, Dianthus superbus, Festuca ovina, Geranium sylvaticum, Melica nutans, Molinia caerulea, Trollius europaeus, Vaccinium myrtillus. The undergrowth layer is sparse and composed with Betula nana, Cotoneaster cinnabarinus, Juniperus sibirica. In the upper layer (about 0.5–0.8 m high) most abundant are tall herbs (Molinia caerulea, Dianthus superbus, Geranium sylvaticum, Trollius europaeus and Cirsium heterophyllum). Lower layer (0.1–0.3 m high) is composed with low herbs (Anthoxanthum alpinum, Bistorta vivipara, Epilobium lactiflorum, E. hornemannii, Festuca ovina, Veronica alpina, Viola biflora, V. canina subsp. montana) and dwarf shrubs (Empetrum hermaphroditum, V. uliginosum, V. myrtillus). Ground layer is prostrate and consists of Sciuro-hypnum starkei, S. reflexum, Sanionia uncinata, Bryum spp. and Polytrichum spp. Association comunities occupy rather large areas and are located above the tree line and in the lower part of the mountain-tundra belt, at 410–540 m a. s. l., on well-moistened steep (45–50°) rocky slopes, exposed to southwest and southeast, near groundwater outlets or in places of late snowmelt. Probably the association is of relic nature and marks the tree line of the warmest Holocene period. Rich of species, including Red Data Book Cotoneaster cinnabarinus, Epilobium lactiflorum, Veronica fruticans, it is a value habitat type «E2.3 Mountain hay meadow» in the Kola Peninsula.","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947 in the Southern Trans-Urals (the steppe zone of Chelyabinsk Region) 费斯杜科-溴化科br - bl。et Tx. ex Soó 1947年在南乌拉尔(车里雅宾斯克地区的草原地带)
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.23
N. Zolotareva, A. Korolyuk, N. Makunina
The steppe zone covers the southern part of Chelya­binsk Region (38 % of territory). Arable land occupies the main part of the steppe zone, virgin steppes form small scattered patches under grazing and regular fires. Until now there was no enough information on the diversity of steppe vegetation in this region, whereas the steppe syntaxonomy of adjacent regions is rather well developed (Zhirnova, Saitov, 1993; Dubravnaya ..., 1994; Flora..., 2010; Korolyuk, 2014, 2017; Unikalnye..., 2014; Yusupova, Yamalov, 2016; Yusupova et al., 2018; Golovanov et al., 2021). The purpose of present study is to reveal the diversity of the steppes in the Southern Trans-Urals within the steppe zone and to present their classification accor­ding to Braun-Blanquet approach. The investigated area is a high foothill plain, sett­ling on the Trans-Urals peneplain. Its western border frames the foot of the Urals eastern ridges, and the eastern one adjoins the western limit of marine tertiary sediments of the West Siberian Plain. Igneous, sedimentary and metamorphic rocks of the Paleozoic prevail in geological structure, granite intrusions are widespread. Dominant soils are typical, southern and saline chernozem. The steppe zone forms latitudinal stripe of 2 degrees wide with its northern border along 54 10’ N. From the north to the south the climate becomes warmer and drier. A peculiarity of this area are numerous tiny pine, birch and aspen-birch forests forming a landscape of “false forest-steppe”. The article is based on the analysis of 286 geobotanical relevés made by authors in 2006–2021 in the southern part of Chelyabinsk Region. The classification was carried out using a modified TWINSPAN algorithm (Roleček et al., 2009) in the JUICE 7.0 package (Tichý, 2002). There are 7 associations, 1 subassociations, 5 variants and 1 community, belonging to orders Brachypodietalia pinnati (meadow steppes) and Helictotricho-Stipetalia (typical steppes) within the class Festuco-Brometea. Associations Artemisio nit­rosae–Festucetum valesiacae ass. nov. and Cari­ci supinae–Aizopsietum hybridae ass. nov., subass. ­Diantho aci­cularis–Orostachyetum spinosae inops subass. nov. and community Nepeta ucranica–Stipa lessingiana, as well as 5 variants were described for the first time. Ass. Diantho acicularis–Orosta­chyetum spinosae Schubert, Jäger et Mahn ex Yamalov, Zolotareva, Korolyuk, Makunina, Lebedeva ass. nov. and subass. Poo angustifoliae–Stipetum pennatae Yamalov, Bayanov, Muldashev et Averinova 2013 typicum subass. nov. were validated. Most of syntaxa forming the basis of steppe vegetation belong to the order Helictotricho-Stipetalia. The zonal herb-bunchgrass steppes of the ass. He­lictotricho desertorum–Stipetum rubentis occur on flat surfaces (placors) and gentle slopes, prevailing on hilly plain. Previuosly the such steppes dominated in the northern part of the steppe zone in the West Siberian Plain and Northern Kazakhstan, but now most of these have been replaced by arable l
草原区覆盖车里雅宾斯克州南部(占领土的38%)。草原地带以耕地为主,原始草原在放牧和定期生火的条件下形成零星的小块。到目前为止,关于该地区草原植被多样性的资料还不够,而邻近地区的草原分类学却相当发达(Zhirnova, Saitov, 1993;Dubravnaya……, 1994;植物……, 2010;Korolyuk, 2014, 2017;Unikalnye……, 2014;尤苏波娃,亚马洛夫,2016;Yusupova et al., 2018;Golovanov et al., 2021)。本研究的目的是揭示乌拉尔南部跨乌拉尔草原在草原带内的多样性,并根据布朗-布兰凯方法提出草原的分类。研究区是位于乌拉尔平原上的高山麓平原。它的西部边界是乌拉尔东部山脊的底部,东部边界毗邻西西伯利亚平原海相第三系沉积物的西部边界。地质构造以古生代火成岩、沉积岩和变质岩为主,花岗岩侵入广泛分布。优势土为典型的南黑钙土和盐碱土。草原带沿北纬54 10′n呈2度宽的纬向带状,由北向南气候变暖变干燥。这个地区的一个特点是许多细小的松树、桦树和白桦林形成了一个“假森林草原”的景观。本文基于作者2006-2021年在车里雅宾斯克州南部地区所做的286份地学相关数据的分析。在JUICE 7.0软件包(Tichý, 2002)中使用改进的TWINSPAN算法(role<e:1>等人,2009)进行分类。有7个联会、1个亚联会、5个变异和1个群落,分别隶属于羊茅科- brometea纲中的brachypoditalia pinnati目(草甸草原)和Helictotricho-Stipetalia(典型草原)。协会:艾草-玫瑰-秋香草-花香草和秋香草-秋香草。-石楠花-石楠花11 .和群落中首次发现乌兰尼塔-小针茅,以及5个变异。as . Diantho acularis - orosta - chyetum spinosae Schubert, Jäger et Mahn ex Yamalov, Zolotareva, Korolyuk, Makunina, Lebedeva Ass. 11 .和subbass。Yamalov, Bayanov, Muldashev et Averinova 2013典型亚种。11月被证实。构成草原植被基础的大部分syntaxa都属于赤毛目。草甸草(He-lictotricho desertorum-Stipetum rubentis)的地带性草本-束草草原生长在平坦的地表和缓坡上,多见于丘陵平原。以前,这些草原主要分布在西西伯利亚平原和哈萨克斯坦北部的草原带北部,但现在大部分已经被可耕地所取代。未开垦的草原被广泛用作牧场,现在被分配给阿耳米西奥-毛缕草。短叶草目草甸草原与“假森林草原”景观密切相关。在草原带的草甸草原的亚底。其子a.s.页。典型草(图4)生长在森林边缘和浅洼地。再往北,在跨乌拉尔山脉的森林草原地带,这种亚类群变得很典型。“假森林-草原”带状中生草甸草原多属亚纲。冠状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状鳞状。水分、盐度和岩石露头是导致研究区褐藻类植被分异的主要因素。“假森林-草原”景观沿水分梯度的拓扑序列为:Galio veri-Stipetum tirsae serratuletosum coronatae(森林边缘草甸草原)→Poo angustifoliae-Stipetum pennatae typicum(森林边缘和浅洼地草甸草原)→Helictotricho desertori - stipetum rubentis(普通草本-束草草原)。乌拉尔山脉中部大量的岩石露头是宠物植物群落广泛分布的原因。然而,岩石植物草原的多样性和物种丰富度在乌拉尔平原上很小(只有两个组合),那里的粗糙骨骼和侵蚀土壤很少。长尾草(Carici supinae - aizopsitum hybridae ass. nov.)的岩生草原(表11,rel. 1-12),全类型:表11,rel. 1-12。4(12-0173):俄罗斯联邦,车里雅宾斯克州,切斯门斯基区,靠近Kalinovskiy定居点的Shchukina山,53.81199°N, 60.50121°E, 2012年6月12日,收集者- A. Yu。Korolyuk)在乌拉尔-托博尔斯克流域地势最高的花岗岩露头上很常见。鲈鱼群落。刺蕨-刺蕨亚科。11月(表10) 草原区覆盖车里雅宾斯克州南部(占领土的38%)。草原地带以耕地为主,原始草原在放牧和定期生火的条件下形成零星的小块。到目前为止,关于该地区草原植被多样性的资料还不够,而邻近地区的草原分类学却相当发达(Zhirnova, Saitov, 1993;Dubravnaya……, 1994;植物……, 2010;Korolyuk, 2014, 2017;Unikalnye……, 2014;尤苏波娃,亚马洛夫,2016;Yusupova et al., 2018;Golovanov et al., 2021)。本研究的目的是揭示乌拉尔南部跨乌拉尔草原在草原带内的多样性,并根据布朗-布兰凯方法提出草原的分类。研究区是位于乌拉尔平原上的高山麓平原。它的西部边界是乌拉尔东部山脊的底部,东部边界毗邻西西伯利亚平原海相第三系沉积物的西部边界。地质构造以古生代火成岩、沉积岩和变质岩为主,花岗岩侵入广泛分布。优势土为典型的南黑钙土和盐碱土。草原带沿北纬54 10′n呈2度宽的纬向带状,由北向南气候变暖变干燥。这个地区的一个特点是许多细小的松树、桦树和白桦林形成了一个“假森林草原”的景观。本文基于作者2006-2021年在车里雅宾斯克州南部地区所做的286份地学相关数据的分析。在JUICE 7.0软件包(Tichý, 2002)中使用改进的TWINSPAN算法(role<e:1>等人,2009)进行分类。有7个联会、1个亚联会、5个变异和1个群落,分别隶属于羊茅科- brometea纲中的brachypoditalia pinnati目(草甸草原)和Helictotricho-Stipetalia(典型草原)。协会:艾草-玫瑰-秋香草-花香草和秋香草-秋香草。-石楠花-石楠花11 .和群落中首次发现乌兰尼塔-小针茅,以及5个变异。as . Diantho acularis - orosta - chyetum spinosae Schubert, Jäger et Mahn ex Yamalov, Zolotareva, Korolyuk, Makunina, Lebedeva Ass. 11 .和subbass。Yamalov, Bayanov, Muldashev et Averinova 2013典型亚种。11月被证实。构成草原植被基础的大部分syntaxa都属于赤毛目。草甸草(He-lictotricho desertorum-Stipetum rubentis)的地带性草本-束草草原生长在平坦的地表和缓坡上,多见于丘陵平原。以前,这些草原主要分布在西西伯利亚平原和哈萨克斯坦北部的草原带北部,但现在大部分已经被可耕地所取代。未开
{"title":"Class Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947 in the Southern Trans-Urals (the steppe zone of Chelyabinsk Region)","authors":"N. Zolotareva, A. Korolyuk, N. Makunina","doi":"10.31111/vegrus/2023.46.23","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.23","url":null,"abstract":"The steppe zone covers the southern part of Chelya­binsk Region (38 % of territory). Arable land occupies the main part of the steppe zone, virgin steppes form small scattered patches under grazing and regular fires. Until now there was no enough information on the diversity of steppe vegetation in this region, whereas the steppe syntaxonomy of adjacent regions is rather well developed (Zhirnova, Saitov, 1993; Dubravnaya ..., 1994; Flora..., 2010; Korolyuk, 2014, 2017; Unikalnye..., 2014; Yusupova, Yamalov, 2016; Yusupova et al., 2018; Golovanov et al., 2021). The purpose of present study is to reveal the diversity of the steppes in the Southern Trans-Urals within the steppe zone and to present their classification accor­ding to Braun-Blanquet approach. The investigated area is a high foothill plain, sett­ling on the Trans-Urals peneplain. Its western border frames the foot of the Urals eastern ridges, and the eastern one adjoins the western limit of marine tertiary sediments of the West Siberian Plain. Igneous, sedimentary and metamorphic rocks of the Paleozoic prevail in geological structure, granite intrusions are widespread. Dominant soils are typical, southern and saline chernozem. The steppe zone forms latitudinal stripe of 2 degrees wide with its northern border along 54 10’ N. From the north to the south the climate becomes warmer and drier. A peculiarity of this area are numerous tiny pine, birch and aspen-birch forests forming a landscape of “false forest-steppe”. The article is based on the analysis of 286 geobotanical relevés made by authors in 2006–2021 in the southern part of Chelyabinsk Region. The classification was carried out using a modified TWINSPAN algorithm (Roleček et al., 2009) in the JUICE 7.0 package (Tichý, 2002). There are 7 associations, 1 subassociations, 5 variants and 1 community, belonging to orders Brachypodietalia pinnati (meadow steppes) and Helictotricho-Stipetalia (typical steppes) within the class Festuco-Brometea. Associations Artemisio nit­rosae–Festucetum valesiacae ass. nov. and Cari­ci supinae–Aizopsietum hybridae ass. nov., subass. ­Diantho aci­cularis–Orostachyetum spinosae inops subass. nov. and community Nepeta ucranica–Stipa lessingiana, as well as 5 variants were described for the first time. Ass. Diantho acicularis–Orosta­chyetum spinosae Schubert, Jäger et Mahn ex Yamalov, Zolotareva, Korolyuk, Makunina, Lebedeva ass. nov. and subass. Poo angustifoliae–Stipetum pennatae Yamalov, Bayanov, Muldashev et Averinova 2013 typicum subass. nov. were validated. Most of syntaxa forming the basis of steppe vegetation belong to the order Helictotricho-Stipetalia. The zonal herb-bunchgrass steppes of the ass. He­lictotricho desertorum–Stipetum rubentis occur on flat surfaces (placors) and gentle slopes, prevailing on hilly plain. Previuosly the such steppes dominated in the northern part of the steppe zone in the West Siberian Plain and Northern Kazakhstan, but now most of these have been replaced by arable l","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field mire seminar with international participation in Polistovsky state nature reserve (Pskov Region, Bezhanitsy settlement, September 8–9, 2022) 2022年9月8日至9日,波利斯托夫斯基国家自然保护区(普斯科夫地区别扎尼茨定居点)国际参与的实地沼泽研讨会
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.126
О. V. Galanina, N. P. Korablev, V. Smagin, G. A. Tyusov
Brief information is provided on the Mire field seminar with international participation held on September 8–9, 2022 on the basis of the Polistovsky State Nature Reserve (Pskov Region, Russia). The two-day seminar included a plenary session and a field trip to the territory of the Reserve with a visit to the “Plavnitsa mire” ecotrail. Ten reports were presented as well modern methods of studying mire ecosystems were demonstrated.
简要介绍了2022年9月8日至9日在俄罗斯普斯科夫地区Polistovsky国家自然保护区举行的国际参与的沼泽实地研讨会。为期两天的研讨会包括全体会议和实地考察,并参观了“普拉夫尼察沼泽”生态径。提出了十项报告,并展示了研究沼泽生态系统的现代方法。
{"title":"Field mire seminar with international participation in Polistovsky state nature reserve (Pskov Region, Bezhanitsy settlement, September 8–9, 2022)","authors":"О. V. Galanina, N. P. Korablev, V. Smagin, G. A. Tyusov","doi":"10.31111/vegrus/2023.46.126","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.126","url":null,"abstract":"Brief information is provided on the Mire field seminar with international participation held on September 8–9, 2022 on the basis of the Polistovsky State Nature Reserve (Pskov Region, Russia). The two-day seminar included a plenary session and a field trip to the territory of the Reserve with a visit to the “Plavnitsa mire” ecotrail. Ten reports were presented as well modern methods of studying mire ecosystems were demonstrated.","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The syntaxonomy of vegetation of the fjell field belt in Khibiny and Lovozero mountains (Kola Peninsula) 科拉半岛希比尼-洛沃泽罗山丘陵地带植被分类
Q4 Agricultural and Biological Sciences Pub Date : 2023-01-01 DOI: 10.31111/vegrus/2023.46.63
A. Danilova, N. Koroleva, A. Novakovskiy
The fjell field belt is located in mountains of temperate, boreal and arctic zones above the belts with closed vegetation. The environment of the fjell fields is formed due to severe microclimate and short ­growing season, thin soil layer and snow-free conditions in winter (Tolmachev, 1948). The main feature of fjell field landscape is the sparse plant cover dominated by mosses and lichens. The vegetation of fjell fields is still poorly investigated: some geobotanical relevés are available for Scandinavian Mountains (Nordhagen, 1928, 1943; Gjaerevoll, 1950, 1956), West Greenland (Sieg, Daniëls, 2005; Sieg et al., 2006, 2009; Sieg, Drees, 2007), Spitsbergen (Hadač, 1946, 1989; Eurola, 1968; Möller, 2000), and Putorana Plateau (Matveyeva, 2002). The Khibiny and Lovozero Mountains rise up to 1200 m. The vegetation of higher elevations from 840 to 1200 m was classified according to Braun-Blanquet approach in 2013–2021. Based on 90 relevés, 8 associations (5 as new ones), 2 variants and 1 community type were described (Tables 1–8) which belong to 6 alliances, 6 orders, and 6 classes. To arrange the syntaxa described in Khibiny and Lovozero Mountains in higher classification units correctly, we used the first descriptions of alliances in Fennoscandia (62 relevés) and published data of sparse vegetation in fjell fields in Spitsbergen (57 relevés). Among the Spitsbergen data there are 17 relevés of the ass. Sphaerophoro–Racomietum lanuginosi (Hadač 1946) Hofmann 1968 (Hadač, 1989: 159, Table 16; Möller, 2000: 103, Table 30), 19 relevés of the ass. Anthelio–Luzuletum arcuatae Nordh. 1928 (Möller, 2000: 100, Table 29), 21 relevés of vegetation of the fjell fields, not attributed by the author to any syntaxon (Eurola, 1968: 16, 22). Fennoscandian data (62 relevés) include 15 relevés of the ass. Oxyrie­tum digynae Gjaerevoll 1950 of the Saxifrago stellaris–Oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 405, Table VI, rel. 1–15), 10 relevés of the ass. Oppositifolietum (Saxifragetum opposifoliae Gjaerevoll 1950) of the Saxifrago oppositifoliae–Oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 422–425, Table XIV, rel. 1–10), 10 relevés of Diapensia–Loiseleuria–Empetrum-Soz. (ass. Loi­seleurio-Diapensietum Nordh. 1943) of the alliance Loiseleurio-Arctostaphylion Kalliola ex Nordh. 1943 (Kalliola, 1939: 175–179, Table 26, rel. 1–10), 12 relevés of Anthelia–Cesia reiche–Luzula arcua­ta-Ass. (ass. Anthelio–Luzuletum arcuatae Nordh. 1928) (Nordhagen, 1928: 311, Table, rel. 1–12), 15 relevés of the ass. Salicetum herbaceae borealis (Cassiopo–Salicion herbaceae) (Nordhagen, 1928: 266–267, Table 42, rel. 1–15). In total 209 relevés were analyzed with use the ExStatR program (Novakovskiy, 2016) based on the Non-metric Multidimensional Scaling (NMS), the Sjørensen-Chekanovsky coefficient was used as a measure of similarity/distance. Plant communities of the class Thlaspietea rotundifolii Br.-Bl. et al. 1947, the alliance Luzulion arcuatae Elvebakk 1985 ex Danilo
丘陵地带位于温带、寒带和北极地区的山地地带,植被封闭。由于小气候恶劣,生长季节短,土层薄,冬季无雪,形成了丘陵地的环境(Tolmachev, 1948)。湿地景观的主要特征是以苔藓和地衣为主的稀疏植被覆盖。菲尔田野的植被调查仍然很差:斯堪的纳维亚山脉有一些与地学有关的资料(诺德哈根,1928年,1943年;Gjaerevoll, 1950, 1956),西格陵兰(Sieg, Daniëls, 2005;Sieg et al., 2006, 2009;Sieg, Drees, 2007),斯匹次卑尔根(hadasei, 1946, 1989;Eurola, 1968;Möller, 2000)和Putorana Plateau (Matveyeva, 2002)。希比尼山和洛沃泽罗山海拔高达1200米。2013-2021年,采用Braun-Blanquet方法对840 ~ 1200 m高海拔植被进行分类。基于90个相关的数据,共描述了8个关联(5个为新关联)、2个变异和1个群落类型(表1 - 8),隶属于6个联盟、6个目、6个类。为了将Khibiny和Lovozero山所描述的句法群正确地排列在更高的分类单元中,我们使用了Fennoscandia的第一个联盟描述(62个相关的<s:1> <s:1>)和Spitsbergen的fjell田野的稀疏植被数据(57个相关的)。在斯匹次卑尔根岛的数据中,有17个与鱼类有关的数据。Sphaerophoro-Racomietum lanuginosi (hadasei, 1946) Hofmann 1968 (hadasei, 1989: 159,表16;Möller, 2000: 103,表30),19个有关北美ananthelio - luzuletum arcuatae, 1928 (Möller, 2000: 100,表29),21个有关沼泽地植被的资料,作者未将其归为任何分类(Eurola, 1968: 16, 22)。Fennoscandian的62个相关的数据包括15个相关的saifrago stellaris的Oxyrie-tum digynae Gjaerevoll 1950 - oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 405,表VI, rel. 1-15), 10个相关的saifrago对生叶- oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 422-425,表XIV, rel. 1-10), 10个相关的diapenia - loiseleuria - empetrum - soz。(ass. loi - seleurio- diapensitum Nordh. 1943), (Kalliola, 1939: 175-179, Table 26, rel. 1-10), Anthelia-Cesia reiche-Luzula arcua-ta-Ass的12个相关变种。(a . Anthelio-Luzuletum arcuatae north . 1928) (Nordhagen, 1928: 311, Table, rel. 1-12), 15 . Salicetum herbaceae borealis (Cassiopo-Salicion herbacae) (Nordhagen, 1928: 266-267, Table 42, rel. 1-15)。使用基于非度量多维尺度(NMS)的ExStatR程序(Novakovskiy, 2016)分析了总共209个相关的<s:1>个体数据,使用Sjørensen-Chekanovsky系数作为相似性/距离的度量。标题圆叶蓟亚纲植物群落研究。Luzulion arcuatae Elvebakk 1985 ex Danilova et Koroleva 2022最广泛分布在Khibiny和Lovozero山脉的丘陵地区。该联盟在斯匹次卑尔根被提议为临时联盟(Elvebakk, 1985)。在这里,我们验证了这一联盟,并提出了saifrago opposiveae - flavocerarietum nivalis ass. nov. hoc loco作为一个新类型(本文,表2,关联rel. 5 (2D/20)的类型相关(neotypus))。Khibiny和Lovozero山脉的Luzulion arcuatae联盟包括以地衣和骆马(Racomitrium lanuginosum)为主的稀疏覆盖林。它不同于雪床植被(Salicetea herbaceae Br.-Bl)。(1948年)由于大量的恐风地衣,以及由于其诊断种(Arctous alpina, Diapensia lapponica, Loiseleuria procumbens)的缺失或数量少,来自Loiseleuria -矮灌木群落的Loi-seleurio-Arctostaphylion)。它的群落出现在斯匹次卑尔根、斯堪的纳维亚山脉和希比尼和洛沃泽罗山脉的丘陵地带,在那里描述了以下两种关联。saifrago opposite foliae - flavoctraria - tum nivalis ass.11 .(图2,表2和8),命名类型(holotypus) - rel. 5 (2D/20);67.6081°n, 33.7783°e, 08.07.2020;1010米。诊断种:白菖蒲(d)、黄菖蒲(d)、cucullata、Racomitrium lanuginosum (d)、saifraga对叶。描述了两种变体-异食癖(表2,第1-9节)和异食癖(表2,第10-16节)。Сetrariello delisei-Racomitrietum luginosi ass. nov(表3和8),命名类型(holotypus) - rel. 2 (83a/19);67.6116°n, 33.7610°e;1010米。诊断种:白脐草、短毛假脐草、黄脐草、根茎草、白柱脐草、大叶脐草、长叶脐草。水杨总纲(水杨总纲-水杨总纲)包括两个总纲,它们与弓形水杨总纲的总纲非常相似。北凤仙花,1928年(图) 3、表4和表8).诊断种:juratzkana Anthelia、Harrimanella hypnoides、Gymnomitrion concinnatum (d)、G. corallioides、apicsupella apiculata、Micarea inassata、ocholechia frigida、pseudolophoztica。А党卫军。(表5和8),命名类型(全型)- 2(11/14),67.6644°N, 33.5433°E, 1000 m。诊断种:红腹凤梨花、大叶凤梨花、deliscetrariella、Gymnomitrion concinnatum、Harrimanella hypnoides、Huperzia北极花、Hymenoloma crisp
{"title":"The syntaxonomy of vegetation of the fjell field belt in Khibiny and Lovozero mountains (Kola Peninsula)","authors":"A. Danilova, N. Koroleva, A. Novakovskiy","doi":"10.31111/vegrus/2023.46.63","DOIUrl":"https://doi.org/10.31111/vegrus/2023.46.63","url":null,"abstract":"The fjell field belt is located in mountains of temperate, boreal and arctic zones above the belts with closed vegetation. The environment of the fjell fields is formed due to severe microclimate and short ­growing season, thin soil layer and snow-free conditions in winter (Tolmachev, 1948). The main feature of fjell field landscape is the sparse plant cover dominated by mosses and lichens. The vegetation of fjell fields is still poorly investigated: some geobotanical relevés are available for Scandinavian Mountains (Nordhagen, 1928, 1943; Gjaerevoll, 1950, 1956), West Greenland (Sieg, Daniëls, 2005; Sieg et al., 2006, 2009; Sieg, Drees, 2007), Spitsbergen (Hadač, 1946, 1989; Eurola, 1968; Möller, 2000), and Putorana Plateau (Matveyeva, 2002). The Khibiny and Lovozero Mountains rise up to 1200 m. The vegetation of higher elevations from 840 to 1200 m was classified according to Braun-Blanquet approach in 2013–2021. Based on 90 relevés, 8 associations (5 as new ones), 2 variants and 1 community type were described (Tables 1–8) which belong to 6 alliances, 6 orders, and 6 classes. To arrange the syntaxa described in Khibiny and Lovozero Mountains in higher classification units correctly, we used the first descriptions of alliances in Fennoscandia (62 relevés) and published data of sparse vegetation in fjell fields in Spitsbergen (57 relevés). Among the Spitsbergen data there are 17 relevés of the ass. Sphaerophoro–Racomietum lanuginosi (Hadač 1946) Hofmann 1968 (Hadač, 1989: 159, Table 16; Möller, 2000: 103, Table 30), 19 relevés of the ass. Anthelio–Luzuletum arcuatae Nordh. 1928 (Möller, 2000: 100, Table 29), 21 relevés of vegetation of the fjell fields, not attributed by the author to any syntaxon (Eurola, 1968: 16, 22). Fennoscandian data (62 relevés) include 15 relevés of the ass. Oxyrie­tum digynae Gjaerevoll 1950 of the Saxifrago stellaris–Oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 405, Table VI, rel. 1–15), 10 relevés of the ass. Oppositifolietum (Saxifragetum opposifoliae Gjaerevoll 1950) of the Saxifrago oppositifoliae–Oxyrion digynae Gjaerevoll 1950 (Gjaerevoll, 1950: 422–425, Table XIV, rel. 1–10), 10 relevés of Diapensia–Loiseleuria–Empetrum-Soz. (ass. Loi­seleurio-Diapensietum Nordh. 1943) of the alliance Loiseleurio-Arctostaphylion Kalliola ex Nordh. 1943 (Kalliola, 1939: 175–179, Table 26, rel. 1–10), 12 relevés of Anthelia–Cesia reiche–Luzula arcua­ta-Ass. (ass. Anthelio–Luzuletum arcuatae Nordh. 1928) (Nordhagen, 1928: 311, Table, rel. 1–12), 15 relevés of the ass. Salicetum herbaceae borealis (Cassiopo–Salicion herbaceae) (Nordhagen, 1928: 266–267, Table 42, rel. 1–15). In total 209 relevés were analyzed with use the ExStatR program (Novakovskiy, 2016) based on the Non-metric Multidimensional Scaling (NMS), the Sjørensen-Chekanovsky coefficient was used as a measure of similarity/distance. Plant communities of the class Thlaspietea rotundifolii Br.-Bl. et al. 1947, the alliance Luzulion arcuatae Elvebakk 1985 ex Danilo","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Syntaxonomic diversity of forest meadows at Ob-Inya watershed in the Novosibirsk Region 新西伯利亚地区鄂布-因雅流域森林草甸的分类学多样性
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.43.41
M. P. Tishchenko, E. Zibzeev
The syntaxonomic diversity of forest meadows at the Ob-Inya watershed was studied within the Novosibirsk Region. The territory is a part of the Sokur elevation, which approaches the Salair ridge in the south-east. Common is the erosion of the landscape reflected in dense network of river valleys and draws. The vegetation is transitional between subtaiga and forest steppe (Reverdatto, 1931; Vandakurova, 1957; Kuminova, 1973; etc.). Forest meadows (the order Carici macrourae–Crepidetalia sibiricae Ermakov et al. 1999 of the class Molinio-Arrhenatheretea R. Tx. 1937) occur on the edges and glades of grassy aspen and birch forests and are an element of vegetation of both forest steppe zone and the subtaiga subzone. Their set of species and syntaxonomic diversity reflect the soil and climatic conditions of the location and may serve as a criteria for defining the zonal and subzonal borderlines. The aim of the study was to reveal and to characterize the syntaxonomic diversity of the forest meadows of the Ob-Inya watershed. The studies were conducted at the territories of the Novosibirsk, Moshkovo, and Bolotnoye districts. 114 reléves served as a basis for the study. Forest meadows are represented by 2 associations, 2 subassociations, 2 variants and 2 communities from 2 suballiances of the alliance Crepidion sibiricae Mirkin ex Ermakov et al. 1999 (Table 1). Communities of the ass. Crepidetum sibiricae Dymina ex Ermakov et al. 1999 are most common, and occur everywhere in the studied area (Table 2). The association is represented by two subassociations differing by the degree of the moisture content in the habitats. Communities of the subass. typicum occur in depressed highly moistered landscapes primarily in the axial part of the Sokur elevation and in the north-eastern regions of the Ob-Inya watershed. A new subass. Crepidetum sibiricae fragarietosum viridis subass. nov. uniting more xerophytic communities which are uniformly dispersed over the territory in well-drained flat and convex parts of the watershed and on the gentle slopes of the draws. Character for these is participation of xeromesophytes from the diagnostic combination of dry forest meadows of the suballiance Aconito barbati–Vicenion unijugaeKorolyuk et al. 2016. The nomenclature type of the subassociation (holotypus): Table 2, rel. 17 (field number Z20-021), Novosibirsk region, Bolotnoye district, near the Kozlovka village, 55.86934° N, 84.15000° E, 31.08.2020, the author E. G. Zibzeev. Under the increased grazing pressure on the communities of the subass. C. s. fragarietosum viridis, pasture meadows of the var. Poa angustifolia, mostly dominating by Poa angustifolia,were formed near the settlements of the south-western part of the Sokur elevation. There are some meadow-forest plants of the alliance Crepidion sibiricae of the order Carici macrourae–Crepidetalia sibiricae in such communities. A new forest meadow ass. Galatello biflorae–Artemisietum macranthae ass. nov. (Table 3) unites dr
对新西伯利亚地区奥博-因雅流域森林草甸的分类学多样性进行了研究。该地区是Sokur高地的一部分,靠近东南部的Salair山脊。常见的是景观的侵蚀反映在密集的河谷和沟渠网络上。植被是林带和森林草原之间的过渡性植被(Reverdatto, 1931;Vandakurova, 1957;Kuminova, 1973;等等)。森林草甸(Carici macroae - crepidetalia sibiricae Ermakov etal . 1999,属于Molinio-Arrhenatheretea R. Tx. 1937)出现在长满草的白杨林和白桦林的边缘和林中空地上,是森林草原带和针叶林亚带植被的一个组成部分。它们的种类和分类学多样性反映了该地区的土壤和气候条件,并可作为确定地带性和亚地带性界线的标准。该研究的目的是揭示和表征obo - inya流域森林草甸的分类学多样性。这些研究是在新西伯利亚、莫什科沃和波洛特诺耶地区进行的。114份报告是这项研究的基础。森林草甸由2个群落、2个亚群落、2个变体和2个来自西伯利亚Crepidetum sibiricae Mirkin ex Ermakov et al. 1999联盟的2个亚群落代表(表1)。西伯利亚Crepidetum sibiricae Dymina ex Ermakov et al. 1999的群落最常见,在研究区域随处可见(表2)。该群落由栖息地含水量不同的两个亚群落代表。鲈鱼群落。典型的发生在索库尔高地的轴向部分和奥布-因亚流域的东北部的洼地高度湿润的景观中。一个新的副艇长。白毛鬼马属,紫毛鬼马亚。11月联合了更多的旱生群落,这些群落均匀地分布在排水良好的分水岭的平坦和凸起部分以及平缓的斜坡上。这些特征是来自乌头亚联盟干森林草牧场诊断组合的干生植物的参与- vicenion unijugaeKorolyuk等人。2016。亚类群的命名类型(holotypus):表2,rel. 17(野外编号Z20-021), Novosibirsk地区,Bolotnoye地区,Kozlovka村附近,55.86934°N, 84.15000°E, 2020年8月31日,作者e.g. Zibzeev。在不断增加的放牧压力下,亚鲈鱼群落。在Sokur高地的西南聚落附近形成了以黄花蒿为主的黄花蒿(C. s. fragarietosum viridis)草地。在这样的群落中,有一些草原森林植物,属于大叶蝉目-西伯利亚叶蝉目。一种新的森林草牧场,Galatello biflorae-Artemisietum macranthae ass. 11 .(表3)将出现在Sokur海拔轴向部分阳光照射的凸起斜坡上部的干燥森林草牧场联合起来,这些群落在生态条件上与亚底的这些封闭的条件下发展。绿毛Crepidetum sibiricaefragarietosum viridis草甸的旱生成分较多,没有高草本植物;草甸中植物的丰度和连续性较低,而草甸-草原元素的比例较高。命名类型(holotypus):表3,rel. 1(野外编号mr20-033), Moshkovo地区新西伯利亚地区,Verkh-Balta村附近地区,55.32588°N, 83.76177°E, 30.08.2020,作者M. P. Tishchenko。这种关联可能被认为是obi - inya流域(obi河右岸地区)干旱森林草甸的针叶林变异。在物种组成和环境发生方面,群落与鄂毕河左岸亚针叶林中的Aegopodio podagrariae-Brachypodietum pinnati Tishchenko et al. 2015相似。生长在亚针叶林中的旱生植物和喜湿植物在其群落中很常见。鄂毕河左岸地区Galatello biflorae-Brachypodietum pinnati Korolyuk 1998和philipendulo vulgaro - brachypodietum pinnati Makunina等人的群落(Korolyuk, Kipriyanova, 1998;Makunina, 2016)在右岸地区,发生在类似的森林草原栖息地。在obo -Inya流域中部的高地和Inya河右岸地区,描述了鸢尾群落的干燥森林草甸(表4,rel. 1-6)。其特征是鸢尾和鸢尾的参与,在研究区很少见。雷雨苔(Carex praecox)群落(表4,rel. 7-10)包括最干燥栖息地的森林草甸,在那里发现了一些草原物种。 对新西伯利亚地区奥博-因雅流域森林草甸的分类学多样性进行了研究。该地区是Sokur高地的一部分,靠近东南部的Salair山脊。常见的是景观的侵蚀反映在密集的河谷和沟渠网络上。植被是林带和森林草原之间的过渡性植被(Reverdatto, 1931;Vandakurova, 1957;Kuminova, 1973;等等)。森林草甸(Carici macroae - crepidetalia sibiricae Ermakov etal . 1999,属于Molinio-Arrhenatheretea R. Tx. 1937)出现在长满草的白杨林和白桦林的边缘和林中空地上,是森林草原带和针叶林亚带植被的一个组成部分。它们的种类和分类学多样性反映了该地区的土壤和气候条件,并可作为确定地带性和亚地带性界线的标准。该研究的目的是揭示和表征obo - inya流域森林草甸的分类学多样性。这些研究是在新西伯利亚、莫什科沃和波洛特诺耶地区进行的。114份报告是这项研究的基础。森林草甸由2个群落、2个亚群落、2个变体和2个来自西伯利亚Crepidetum sibiricae Mirkin ex Ermakov et al. 1999联盟的2个亚群落代表(表1)。西伯利亚Crepidetum sibiricae Dymina ex Ermakov et al. 1999的群落最常见,在研究区域随处可见(表2)。该群落由栖息地含水量不同的两个亚群落代表。鲈鱼群落。典型的发生在索库尔高地的轴向部分和奥布-因亚流域的东北部的洼地高度湿润的景观中。一个新的副艇长。白毛鬼马属,紫毛鬼马亚。11月联合了更多的旱生群落,这些群落均匀地分布在排水良好的分水岭的平坦和凸起部分以及平缓的斜坡上。这些特征是来自乌头亚联盟干森林草牧场诊断组合的干生植物的参与- vicenion unijugaeKorolyuk等人。2016。亚类群的命名类型(holotypus):表2,rel. 17(野外编号Z20-021), Novosibirsk地区,Bolotnoye地区,Kozlovka村附近,55.86934°N, 84.15000°E, 2020年8月31日,作者e.g. Zibzeev。在不断增加的放牧压力下,亚鲈鱼群落。在Sokur高地的西南聚落附近形成了以黄花蒿为主的黄花蒿(C. s. fragarietosum viridis)草地。在这样的群落中,有一些草原森林植物,属于大叶蝉目-西伯利亚叶蝉目。一种新的森林草牧场,Galatello biflorae-Artemisietum macranthae ass. 11
{"title":"Syntaxonomic diversity of forest meadows at Ob-Inya watershed in the Novosibirsk Region","authors":"M. P. Tishchenko, E. Zibzeev","doi":"10.31111/vegrus/2022.43.41","DOIUrl":"https://doi.org/10.31111/vegrus/2022.43.41","url":null,"abstract":"The syntaxonomic diversity of forest meadows at the Ob-Inya watershed was studied within the Novosibirsk Region. The territory is a part of the Sokur elevation, which approaches the Salair ridge in the south-east. Common is the erosion of the landscape reflected in dense network of river valleys and draws. The vegetation is transitional between subtaiga and forest steppe (Reverdatto, 1931; Vandakurova, 1957; Kuminova, 1973; etc.). Forest meadows (the order Carici macrourae–Crepidetalia sibiricae Ermakov et al. 1999 of the class Molinio-Arrhenatheretea R. Tx. 1937) occur on the edges and glades of grassy aspen and birch forests and are an element of vegetation of both forest steppe zone and the subtaiga subzone. Their set of species and syntaxonomic diversity reflect the soil and climatic conditions of the location and may serve as a criteria for defining the zonal and subzonal borderlines. The aim of the study was to reveal and to characterize the syntaxonomic diversity of the forest meadows of the Ob-Inya watershed. The studies were conducted at the territories of the Novosibirsk, Moshkovo, and Bolotnoye districts. 114 reléves served as a basis for the study. Forest meadows are represented by 2 associations, 2 subassociations, 2 variants and 2 communities from 2 suballiances of the alliance Crepidion sibiricae Mirkin ex Ermakov et al. 1999 (Table 1). Communities of the ass. Crepidetum sibiricae Dymina ex Ermakov et al. 1999 are most common, and occur everywhere in the studied area (Table 2). The association is represented by two subassociations differing by the degree of the moisture content in the habitats. Communities of the subass. typicum occur in depressed highly moistered landscapes primarily in the axial part of the Sokur elevation and in the north-eastern regions of the Ob-Inya watershed. A new subass. Crepidetum sibiricae fragarietosum viridis subass. nov. uniting more xerophytic communities which are uniformly dispersed over the territory in well-drained flat and convex parts of the watershed and on the gentle slopes of the draws. Character for these is participation of xeromesophytes from the diagnostic combination of dry forest meadows of the suballiance Aconito barbati–Vicenion unijugaeKorolyuk et al. 2016. The nomenclature type of the subassociation (holotypus): Table 2, rel. 17 (field number Z20-021), Novosibirsk region, Bolotnoye district, near the Kozlovka village, 55.86934° N, 84.15000° E, 31.08.2020, the author E. G. Zibzeev. Under the increased grazing pressure on the communities of the subass. C. s. fragarietosum viridis, pasture meadows of the var. Poa angustifolia, mostly dominating by Poa angustifolia,were formed near the settlements of the south-western part of the Sokur elevation. There are some meadow-forest plants of the alliance Crepidion sibiricae of the order Carici macrourae–Crepidetalia sibiricae in such communities. A new forest meadow ass. Galatello biflorae–Artemisietum macranthae ass. nov. (Table 3) unites dr","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communities with Heracleum sosnowskyi Manden. in the Kursk Region Heracleum sosnowskyi Manden社区。在库尔斯克地区
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.43.5
L. Arepieva
Classification of communities with Heracleum sosnovskyi in the Kursk Region (Table 1), based on 43 relevés, made by the author in 2014–2020 in some locations mainly in the western part of the study area (Fig. 1), is carried out according to Braun-Blanquet approach. The data are treated by IBIS 7.2 software package (Zverev, 2007). The names of the higher syntaxa follow to «Vegetation of Europe…» (Mucina et al., 2016). Synoptic tables include only species with constancy above I. Soil moisture, reaction, richness in mineral nitrogen, light, temperature and continentality are assessed using mean H. Ellenberg ecological indicator values (Ellenberg et al. 1992), hemeroby — with these of N. G. Ilminskikh ecological 9-point scale (Ilminskikh, 1993). Significant differences between pairs of syntaxa for each environmental factor are determined by the Mann-Whitney U-test in the PAST package (Hammer et al. 2001). 3 associations, 2 variants and 1 derivative community of 3 classes of vegetation are established. Ass. Chelidonio–Aceretum negundi L. Ishbirdina in L. Ishbirdina et al. 1989, var. Heracleum sosnowskyi (Table 2, Fig. 2). The association belongs to alliance Chelidonio–Acerion negundi L. Ishbirdina et A. Ishbirdin 1989, order Chelidonio–Robinietalia pseudoacaciae Jurco ex Hadač et Sofron 1980, class Robinietea Jurco ex Hadač et Sofron 1980. DS of the association are Acer negundo, Chelidonium majus, that of the variant is Heracleum sosnowskyi. Communities most often have three layers. The tree layer is dominated by Acer negundo with 7–20 m heigh and 50–90 % canopy density. The shrub layer (1–3 m, 1–50 %) is dominated by Acer negundo undergrowth, sometimes there are Padus avium, Populus alba, Prunus domestica, Sambucus nigra, S. racemosa, Ulmus glabra. The herb-d­warf shrub layer (height – 70–150 cm, plant cover – 50–100 %) is dominated by Heracleum sosnowskyi, mainly by its vegetative shoots. Generative shoots are found mainly in the most sunlit sites. There are 68 species in the association with 7–21 species per sample plot. The communities formed as a result of H. sosnowskyi penetration into phytocenoses of the var. typica ass. Chelidonio–Aceretum negundi are common in wastelands, along roads and banks of reservoirs, near abandoned houses in villages. There are slight differences in habitats of variants Heracleum sosnowskyi and typica (Fig. 3, Table 4): communities of the first one inhabit wetter soils, while these of the var. typica have the higher levels of temperature, continentality and hemerobiality, that is why there is a lot annuals and biennials, many of which are continental thermophilic species and belong to eu- and polyhemerobes (Lactuca serriola, Atriplex tatarica, Arctium tomentosumи др.). H. sosnowskyi exists even in heavily shaded areas. The species composition of communities of the var. Heracleum sosnowskyi is quite stable which is facilitated by the flow of seeds from surroundings and the capacity of germination of those seeds that
根据作者2014-2020年在研究区西部部分地点(图1)的43份相关数据(Fig. 1),对库尔斯克地区sosnovskyi Heracleum群落进行分类(表1)。数据采用IBIS 7.2软件包(Zverev, 2007)处理。高等句法群的名称遵循“欧洲植被…”(Mucina et al., 2016)。概观表仅包括稳定性高于1的物种。土壤湿度、反应、矿物氮丰富度、光照、温度和大陆性采用H. Ellenberg生态指标值平均值(Ellenberg et al. 1992)和N. G. Ilminskikh生态9分制(Ilminskikh, 1993)进行评估。每种环境因素对句法的显著差异由PAST软件包中的Mann-Whitney u检验确定(Hammer et al. 2001)。建立了3类植被的3个关联、2个变异和1个衍生群落。chelidonio - acertum negundi L. Ishbirdina in L. Ishbirdina etal . 1989, var. Heracleum sosnowskyi(表2,图2)。该协会隶属于Chelidonio-Acerion negundi L. Ishbirdina et A. Ishbirdin 1989, Chelidonio-Robinietalia pseudoacacae Jurco ex hadaset Sofron 1980, Robinietea Jurco ex hadaset Sofron 1980。与之相关的DS是黑槭、白屈苣苔,变种是白屈苣苔。社区通常有三层。乔木层以宏木为主,乔木高7 ~ 20 m,乔木密度50 ~ 90%。灌木层(1 ~ 3 m, 1 ~ 50%)以黑槭为主,间或有柏树、白杨、家李、黑树、总状松、秃榆。草本-矮灌木层(高- 70 ~ 150 cm,盖度- 50 ~ 100%)以雪棘属植物(Heracleum sosnowskyi)为主,以营养枝为主。生芽主要生长在阳光最充足的地方。群落共有68种,每个样地有7 ~ 21种。在荒地、公路沿线、水库岸边、村庄废弃房屋附近,由于H. sosnowskyi渗透到典型的Chelidonio-Aceretum negundi的植物群落中而形成的群落很常见。在生境上有轻微的差异(图3,表4):第一种类型的群落居住在较湿润的土壤中,而典型类型的群落具有较高的温度水平、大陆性和萱草性,这就是为什么有很多一年生和二年生植物,其中许多是大陆嗜热物种,属于eu-和多萱草(Lactuca serriola, Atriplex tatarica, Arctium tomentosumva др.)。H. sosnowskyi甚至存在于阴影浓重的地区。白毛杨群落的物种组成相当稳定,这主要得益于来自周围环境的种子流动和第一年未发芽的种子的萌发能力,以及标本在不利条件下长期处于植物状态的能力(Vinogradova et al., 2010;Panasenko, 2017)。as。Urtico dioicae-Heracleetum sosnowskyi Panasenko et al. 2014(表5,rel. 1-17,图4).该协会隶属于联盟Aegopodion podagrariae Tx. 1967 nomo . conservv。言之凿凿。,林次:林次:林次目:林次1967言之凿凿。,分类:结肠镜下的结肠镜下的结肠镜下的结肠镜下的结肠镜。赫拉克利姆·索斯诺斯基,《荨荨病》。总植被覆盖率为80 - 100%。群落有3个亚层:上层(1.0 ~ 1.5 m)为白雪莲生芽;中间的一个(1-1.5米)是它的叶子;排名靠后的草本植物为:炭黑、牛蒡、蒿、黑球藻、羊角草、鸭茅、凤尾草、凤尾草、凤尾草、凤尾草、凤尾草、凤尾草和荨麻。群落共有物种83种,每个样地有9 ~ 29种。这类群落通常发生在人为生境中,是由白毛藻(Heracleum sosnowskyi)侵入叶豆(Epilobietea angustifolii)类植物群落形成的。衍生群落Heracleum sosnowskyi [Agropyretalia intermedio-repentis](表5,rel. 18-25,图5)。总植被覆盖率为85 - 100%。社区有三个子级别,就像前面的语法一样。然而,与之相反,在衍生群落中,Artemisietea vulgaris Lohmeyer et al. in txt . ex von Rochow 1951中占优势的物种(表6)。Agropyretalia intermedio-repentis T. mller et Görs 1969中的物种具有较高的稳定性。这样的群落,是由雪雪菌侵入这一目植物群落而形成的,分布在道路、荒地和干燥的草地上。群落群落共有68种,每个样地有7 ~ 30种。 根据作者2014-2020年在研究区西部部分地点(图1)的43份相关数据(Fig. 1),对库尔斯克地区sosnovskyi Heracleum群落进行分类(表1)。数据采用IBIS 7.2软件包(Zverev, 2007)处理。高等句法群的名称遵循“欧洲植被…”(Mucina et al., 2016)。概观表仅包括稳定性高于1的物种。土壤湿度、反应、矿物氮丰富度、光照、温度和大陆性采用H. Ellenberg生态指标值平均值(Ellenberg et al. 1992)和N. G. Ilminskikh生态9分制(Ilminskikh, 1993)进行评估。每种环境因素对句法的显著差异由PAST软件包中的Mann-Whitney u检验确定(Hammer et al. 2001)。建立了3类植被的3个关联、2个变异和1个衍生群落。chelidonio - acertum negundi L. Ishbirdina in L. Ishbirdina etal . 1989, var. Heracleum sosnowskyi(表2,图2)。该协会隶属于Chelidonio-Acerion negundi L. Ishbirdina et A. Ishbirdin 1989, Chelidonio-Robinietalia pseudoacacae Jurco ex hadaset Sofron 1980, Robinietea Jurco ex hadaset Sofron 1980。与之相关的DS是黑槭、白屈苣苔,变种是白屈苣苔。社区通常有三层。乔木层以宏木为主,乔木高7 ~ 20 m,乔木密度50 ~ 90%。灌木层(1 ~ 3 m, 1 ~ 50%)以黑槭为主,间或有柏树、白杨、家李、黑树、总状松、秃榆。草本-矮灌木层(高- 70 ~ 150 cm,盖度- 50 ~ 100%)以雪棘属植物(Heracleum sosnowskyi)为主,以营养枝为主。生芽主要生长在阳光最充足的地方。群落共有68种,每个样地有7 ~ 21种。在荒地、公路沿线、水库岸边、村庄废弃房屋附近,由于H. sosnowskyi渗透到典型的Chelidonio-Aceretum negund
{"title":"Communities with Heracleum sosnowskyi Manden. in the Kursk Region","authors":"L. Arepieva","doi":"10.31111/vegrus/2022.43.5","DOIUrl":"https://doi.org/10.31111/vegrus/2022.43.5","url":null,"abstract":"Classification of communities with Heracleum sosnovskyi in the Kursk Region (Table 1), based on 43 relevés, made by the author in 2014–2020 in some locations mainly in the western part of the study area (Fig. 1), is carried out according to Braun-Blanquet approach. The data are treated by IBIS 7.2 software package (Zverev, 2007). The names of the higher syntaxa follow to «Vegetation of Europe…» (Mucina et al., 2016). Synoptic tables include only species with constancy above I. Soil moisture, reaction, richness in mineral nitrogen, light, temperature and continentality are assessed using mean H. Ellenberg ecological indicator values (Ellenberg et al. 1992), hemeroby — with these of N. G. Ilminskikh ecological 9-point scale (Ilminskikh, 1993). Significant differences between pairs of syntaxa for each environmental factor are determined by the Mann-Whitney U-test in the PAST package (Hammer et al. 2001). 3 associations, 2 variants and 1 derivative community of 3 classes of vegetation are established. Ass. Chelidonio–Aceretum negundi L. Ishbirdina in L. Ishbirdina et al. 1989, var. Heracleum sosnowskyi (Table 2, Fig. 2). The association belongs to alliance Chelidonio–Acerion negundi L. Ishbirdina et A. Ishbirdin 1989, order Chelidonio–Robinietalia pseudoacaciae Jurco ex Hadač et Sofron 1980, class Robinietea Jurco ex Hadač et Sofron 1980. DS of the association are Acer negundo, Chelidonium majus, that of the variant is Heracleum sosnowskyi. Communities most often have three layers. The tree layer is dominated by Acer negundo with 7–20 m heigh and 50–90 % canopy density. The shrub layer (1–3 m, 1–50 %) is dominated by Acer negundo undergrowth, sometimes there are Padus avium, Populus alba, Prunus domestica, Sambucus nigra, S. racemosa, Ulmus glabra. The herb-d­warf shrub layer (height – 70–150 cm, plant cover – 50–100 %) is dominated by Heracleum sosnowskyi, mainly by its vegetative shoots. Generative shoots are found mainly in the most sunlit sites. There are 68 species in the association with 7–21 species per sample plot. The communities formed as a result of H. sosnowskyi penetration into phytocenoses of the var. typica ass. Chelidonio–Aceretum negundi are common in wastelands, along roads and banks of reservoirs, near abandoned houses in villages. There are slight differences in habitats of variants Heracleum sosnowskyi and typica (Fig. 3, Table 4): communities of the first one inhabit wetter soils, while these of the var. typica have the higher levels of temperature, continentality and hemerobiality, that is why there is a lot annuals and biennials, many of which are continental thermophilic species and belong to eu- and polyhemerobes (Lactuca serriola, Atriplex tatarica, Arctium tomentosumи др.). H. sosnowskyi exists even in heavily shaded areas. The species composition of communities of the var. Heracleum sosnowskyi is quite stable which is facilitated by the flow of seeds from surroundings and the capacity of germination of those seeds that","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity of aquatic plant communities in the lakes of the Ob-Irtysh interfluve (West Siberia) 西伯利亚西部鄂-额尔齐斯河流域湖泊水生植物群落多样性
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.43.60
L. Kipriyanova
The information on the syntaxonomic diversity of aquatic vegetation in the Ob-Irtysh interfluve (south of West Siberia), which was revealed using the ecological-floristic approach (Braun-Blanquet, 1964) is summarized. Lake ecosystems of the studied region are exposed to cyclical changes in accordance with the cyclicity of the hydrological regime of the lakes. Periodic fluctuations in the water level in lakes are accompanied by changes in mineralization, and therefore the biological regime of the lakes is unstable. The studies were carried out from 2001 to 2014 in Novosibirsk Region and Altai Territory. 164 complete geobotanical relevés made by the author on 80 lakes are used (Fig. 1, table 1); a list of studied lakes is given. Field work was carried out during the period of the lowest water level (summer dry season) — July–August. The following scale was used for abundance estimation: r — the species is extremely rare; + — rare, small cover; 1 — the number of individuals is large, the cover is small or individuals are sparse, but the cover is large; 2 —cover of 5–25 %; 3 — 26–50 %; 4 — 51–75 %; 5 — more than 75 %. Computer programs Turboveg for Windows 2.117 (Hennekens, Schaminée, 2001) and Juice 7.0.45 (Tichý, 2002) were used for data treatment. The syntaxonomic affiliation of phytocenoses was determined using modern literature (Bobrov, Chemeris, 2006; Vegetace…, 2011; Chepinoga, 2015; Landucci et al. 2015; Mucina, 2016). The coenotic diversity of aquatic vegetation in the studied lakes is 43 associations and 2 communities from 12 alliances, 6 orders, 5 classes (Tables 2–11). Eight associations belong to the class Lemnetea; 18 associations — Potamogetonetea; 3 associations and 2 communities — Stigeoclonietea tenuis; 9 associations — Charetea intermediae; 5 associations — Ruppietea maritimae. This rather high value of phytocenotic diversity is due to the high diversity of ecological conditions of specific lakes, in turn, determined by the different origin of lakes, the nature and composition of soils, salinity and chemical composition of waters, and temperature regime. Two new associations – Najadetum majoris ass. nov. and Ranunculetum subrigidi ass. nov. — are described. Table 10 shows the values of the frequency of associations (aquatic communities) in the lakes of the Novosibirsk region. We have identified phytocenotic complexes on the basis of data on the ranges of halotolerance of associations and in accordance with the frequency of associations in the lakes of different mineralization. Four phytocenotic complexes can be distinguished for the studied lakes of the Baraba Lowland and Kulunda Plain: freshwater, oligo-mesohaline, meso-hyperhaline, and euryhaline (Fig. 12). As for the ranges of halotoleration of lake communities, it is obvious that it is impossible to establish the universal ranges of halotolerance of species and communities of macrophytes for a number of reasons 1) regional differences in the salt composition of waters, 2)
总结了利用生态区系方法(Braun Blanquet,1964)揭示的鄂尔齐斯河间(西西伯利亚南部)水生植被群落多样性的信息。研究区域的湖泊生态系统根据湖泊水文状况的周期性而受到周期性变化的影响。湖泊水位的周期性波动伴随着矿化的变化,因此湖泊的生物状况是不稳定的。这些研究于2001年至2014年在新西伯利亚地区和阿尔泰地区进行。使用了作者在80个湖泊上制作的164份完整的地学相关资料(图1,表1);给出了研究湖泊的列表。实地工作是在最低水位(夏季旱季)的7月至8月期间进行的。丰度估计使用了以下尺度:r-该物种极为罕见;+-罕见的小封面;1--个体数量大,覆盖物小或个体稀疏,但覆盖物大;2-覆盖率为5-25%;3--26-50%;4--51-75%;5——超过75%。计算机程序Turboveg for Windows 2.117(Hennekens,Schaminée,2001)和Juice 7.0.45(Tichý,2002)用于数据处理。利用现代文献确定了植物群落的共生关系(Bobrov,Chemeris,2006;Vegetace…,2011;Chepinoga,2015;Landucci等人2015;Mucina,2016)。所研究湖泊中水生植被的共生多样性为43个群落和2个群落,来自12个联盟,6目,5类(表2-11)。八个协会属于Lemnetea类;18个协会——Potamogetonetea;3个协会和2个社区——Stigeolonitea tenuis;9个协会——中间Charetea intermediae;5个协会——Ruppietea maritimae。植物群落多样性的这种相当高的价值是由于特定湖泊生态条件的高度多样性,而这又是由湖泊的不同起源、土壤的性质和组成、水域的盐度和化学组成以及温度状况决定的。描述了两个新的组合——大花蛙和小毛茛。表10显示了新西伯利亚地区湖泊中协会(水生群落)的频率值。我们根据缔合物的耐盐性范围数据,并根据不同矿化湖泊中缔合物的频率,确定了植物群落复合体。在巴拉巴低地和库伦达平原的研究湖泊中,可以区分出四种植物源复合物:淡水、寡中卤、中高卤和广卤(图12)。关于湖泊群落的耐盐性范围,很明显,由于以下几个原因,不可能确定大型植物物种和群落的普遍耐盐性,1)水域盐分组成的区域差异,2)水盐度的季节性波动;3) 矿化测量的不同方法(离子测量法或分析法,以及不同的分析方法——通过离子总和和干燥残留物)。然而,可以区分出几个总体趋势。主要趋势是随着矿化生长,水生和半水生植被的物种和共生多样性减少(Hammer,1988;Williams,1998;我们的数据等)。这种普遍模式适用于所有生物群(Hammer、1986;Williams、1998;Kipriyanova等人,2007等),Potamogetono–Ceratophylletumsubmersi、Najadetum marinae、Potamogetonetum perfoliati更耐高矿化度(根据我们的数据,高达5 g/dm3)。水生植物群落中耐盐性最高的是Ruppietum maritimae和Rupietum drepanensis,以及Cladoveretum fractae。根据我们的研究结果,已经表明,在西西伯利亚东南部的大陆湖泊中,西伯利亚大陆水体的特定cenoses,如Stuckenietum macrocarpae和Cladophoro fractae–Stuckeniestum chakasiensis的群落(Kipriyanova,2017),主要发生在矿化度为0.5–18.0 g/dm3的寡盐和中盐水域。在淡水湖(高达0.5 g/dm3)中,aloidis地层、Nymphaeo-Nupharetum luteae、Nympheetum candite组合很常见,另一种组合出现频率适中且较低。在β-寡卤(0.5–1 g/dm3)湖泊中,三硫化柠檬属和二硫化柠檬属的组合很常见。Lemno–Utricularietum vulgaris、Myriophylletum sibirici、Potamogetonetum果胶、Potamogeonetum perfoliati、Stuckenietum macrocarpae为中等频率,其余为罕见和孤立。
{"title":"Diversity of aquatic plant communities in the lakes of the Ob-Irtysh interfluve (West Siberia)","authors":"L. Kipriyanova","doi":"10.31111/vegrus/2022.43.60","DOIUrl":"https://doi.org/10.31111/vegrus/2022.43.60","url":null,"abstract":"The information on the syntaxonomic diversity of aquatic vegetation in the Ob-Irtysh interfluve (south of West Siberia), which was revealed using the ecological-floristic approach (Braun-Blanquet, 1964) is summarized. Lake ecosystems of the studied region are exposed to cyclical changes in accordance with the cyclicity of the hydrological regime of the lakes. Periodic fluctuations in the water level in lakes are accompanied by changes in mineralization, and therefore the biological regime of the lakes is unstable. The studies were carried out from 2001 to 2014 in Novosibirsk Region and Altai Territory. 164 complete geobotanical relevés made by the author on 80 lakes are used (Fig. 1, table 1); a list of studied lakes is given. Field work was carried out during the period of the lowest water level (summer dry season) — July–August. The following scale was used for abundance estimation: r — the species is extremely rare; + — rare, small cover; 1 — the number of individuals is large, the cover is small or individuals are sparse, but the cover is large; 2 —cover of 5–25 %; 3 — 26–50 %; 4 — 51–75 %; 5 — more than 75 %. Computer programs Turboveg for Windows 2.117 (Hennekens, Schaminée, 2001) and Juice 7.0.45 (Tichý, 2002) were used for data treatment. The syntaxonomic affiliation of phytocenoses was determined using modern literature (Bobrov, Chemeris, 2006; Vegetace…, 2011; Chepinoga, 2015; Landucci et al. 2015; Mucina, 2016). The coenotic diversity of aquatic vegetation in the studied lakes is 43 associations and 2 communities from 12 alliances, 6 orders, 5 classes (Tables 2–11). Eight associations belong to the class Lemnetea; 18 associations — Potamogetonetea; 3 associations and 2 communities — Stigeoclonietea tenuis; 9 associations — Charetea intermediae; 5 associations — Ruppietea maritimae. This rather high value of phytocenotic diversity is due to the high diversity of ecological conditions of specific lakes, in turn, determined by the different origin of lakes, the nature and composition of soils, salinity and chemical composition of waters, and temperature regime. Two new associations – Najadetum majoris ass. nov. and Ranunculetum subrigidi ass. nov. — are described. Table 10 shows the values of the frequency of associations (aquatic communities) in the lakes of the Novosibirsk region. We have identified phytocenotic complexes on the basis of data on the ranges of halotolerance of associations and in accordance with the frequency of associations in the lakes of different mineralization. Four phytocenotic complexes can be distinguished for the studied lakes of the Baraba Lowland and Kulunda Plain: freshwater, oligo-mesohaline, meso-hyperhaline, and euryhaline (Fig. 12). As for the ranges of halotoleration of lake communities, it is obvious that it is impossible to establish the universal ranges of halotolerance of species and communities of macrophytes for a number of reasons 1) regional differences in the salt composition of waters, 2)","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Rastitel''nost'' Rossii
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1