Dirichlet-Ferguson测度均值的定量多维中心极限定理

Pub Date : 2023-01-01 DOI:10.30757/alea.v20-30
G. Torrisi
{"title":"Dirichlet-Ferguson测度均值的定量多维中心极限定理","authors":"G. Torrisi","doi":"10.30757/alea.v20-30","DOIUrl":null,"url":null,"abstract":". The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of the distributional properties of expectations with respect to such measure is an important line of research initiated in Cifarelli and Regazzini (1979a,b) and still very active, see Letac and Piccioni (2018) and Lijoi and Prünster (2009). In this paper we provide explicit upper bounds for the d 3 , the d 2 and the convex distances between random vectors whose components are means of the Dirichlet-Ferguson measure and a random vector distributed according to the multivariate Gaussian law. These results are applied to the Gaussian approximation of linear transformations of random vectors with the Dirichlet distribution, yielding presumably optimal rates on the d 3 and the d 2 distances and presumably suboptimal rates on the convex and the Kolmogorov distances.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantitative Multidimensional Central Limit Theorems for Means of the Dirichlet-Ferguson Measure\",\"authors\":\"G. Torrisi\",\"doi\":\"10.30757/alea.v20-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of the distributional properties of expectations with respect to such measure is an important line of research initiated in Cifarelli and Regazzini (1979a,b) and still very active, see Letac and Piccioni (2018) and Lijoi and Prünster (2009). In this paper we provide explicit upper bounds for the d 3 , the d 2 and the convex distances between random vectors whose components are means of the Dirichlet-Ferguson measure and a random vector distributed according to the multivariate Gaussian law. These results are applied to the Gaussian approximation of linear transformations of random vectors with the Dirichlet distribution, yielding presumably optimal rates on the d 3 and the d 2 distances and presumably suboptimal rates on the convex and the Kolmogorov distances.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

。Dirichlet-Ferguson测度是非参数贝叶斯统计的基石,对该测度的期望分布特性的研究是Cifarelli和Regazzini (1979a,b)发起的一个重要研究方向,并且仍然非常活跃,参见Letac和Piccioni(2018)和Lijoi和pr nster(2009)。本文给出了以Dirichlet-Ferguson测度的均值为分量的随机向量与一个按多元高斯定律分布的随机向量之间的凸距离的显式上界和d2。这些结果应用于具有Dirichlet分布的随机向量的线性变换的高斯近似,在d3和d2距离上产生可能的最优速率,并且在凸和Kolmogorov距离上产生可能的次优速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Quantitative Multidimensional Central Limit Theorems for Means of the Dirichlet-Ferguson Measure
. The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics and the study of the distributional properties of expectations with respect to such measure is an important line of research initiated in Cifarelli and Regazzini (1979a,b) and still very active, see Letac and Piccioni (2018) and Lijoi and Prünster (2009). In this paper we provide explicit upper bounds for the d 3 , the d 2 and the convex distances between random vectors whose components are means of the Dirichlet-Ferguson measure and a random vector distributed according to the multivariate Gaussian law. These results are applied to the Gaussian approximation of linear transformations of random vectors with the Dirichlet distribution, yielding presumably optimal rates on the d 3 and the d 2 distances and presumably suboptimal rates on the convex and the Kolmogorov distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1