B. Finstad, A. Sandvik, O. Ugedal, K. Vollset, Ø. Karlsen, J. Davidsen, Harald Sægrov, R. Lennox
{"title":"沿海地区水产养殖海鳟风险评估方法的建立","authors":"B. Finstad, A. Sandvik, O. Ugedal, K. Vollset, Ø. Karlsen, J. Davidsen, Harald Sægrov, R. Lennox","doi":"10.3354/AEI00391","DOIUrl":null,"url":null,"abstract":"The regulation of aquaculture production in Norway considers the potential impact of salmon lice on wild fish. However, most attention has been focused on impacts on wild Atlantic salmon, despite the fact that anadromous brown trout spend the majority of their marine phase in coastal waters, where salmon lice have the highest impact. In the present study, we first suggest changes in marine living area and marine feeding time as sustainability indicators for first-time migrant sea trout, as high salmon lice densities may exclude sea trout from otherwise usable habitat and force them to return early to freshwater. Further, a method based on a bio-hydrodynamic model was developed to serve as a proxy for these indicators. The method accounted for the size, migration timing and spatial extent of sea trout and was demonstrated in 2 Norwegian salmon aquaculture production areas, Hardangerfjord (PO3) and Romsdalsfjord (PO5), and 2 focal rivers from within each fjord. Based on these comparisons, we exemplify how the change in marine living area and marine feeding time differed between PO3 and PO5 and within the areas. Sea trout migrating to sea late (June 5) were always more affected by lice than those migrating early (April 24) or at intermediate dates (May 15). Our estimates revealed dramatic potential impacts of salmon lice on sea trout populations, which were greatly influenced by spatial and temporal aspects. Considering the negative impacts of salmon lice on sea trout, a holistic view of environmental interactions between aquaculture and wild species that depend on habitats exploited for production is necessary.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of a risk assessment method for sea trout in coastal areas exploited for aquaculture\",\"authors\":\"B. Finstad, A. Sandvik, O. Ugedal, K. Vollset, Ø. Karlsen, J. Davidsen, Harald Sægrov, R. Lennox\",\"doi\":\"10.3354/AEI00391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regulation of aquaculture production in Norway considers the potential impact of salmon lice on wild fish. However, most attention has been focused on impacts on wild Atlantic salmon, despite the fact that anadromous brown trout spend the majority of their marine phase in coastal waters, where salmon lice have the highest impact. In the present study, we first suggest changes in marine living area and marine feeding time as sustainability indicators for first-time migrant sea trout, as high salmon lice densities may exclude sea trout from otherwise usable habitat and force them to return early to freshwater. Further, a method based on a bio-hydrodynamic model was developed to serve as a proxy for these indicators. The method accounted for the size, migration timing and spatial extent of sea trout and was demonstrated in 2 Norwegian salmon aquaculture production areas, Hardangerfjord (PO3) and Romsdalsfjord (PO5), and 2 focal rivers from within each fjord. Based on these comparisons, we exemplify how the change in marine living area and marine feeding time differed between PO3 and PO5 and within the areas. Sea trout migrating to sea late (June 5) were always more affected by lice than those migrating early (April 24) or at intermediate dates (May 15). Our estimates revealed dramatic potential impacts of salmon lice on sea trout populations, which were greatly influenced by spatial and temporal aspects. Considering the negative impacts of salmon lice on sea trout, a holistic view of environmental interactions between aquaculture and wild species that depend on habitats exploited for production is necessary.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00391\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00391","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Development of a risk assessment method for sea trout in coastal areas exploited for aquaculture
The regulation of aquaculture production in Norway considers the potential impact of salmon lice on wild fish. However, most attention has been focused on impacts on wild Atlantic salmon, despite the fact that anadromous brown trout spend the majority of their marine phase in coastal waters, where salmon lice have the highest impact. In the present study, we first suggest changes in marine living area and marine feeding time as sustainability indicators for first-time migrant sea trout, as high salmon lice densities may exclude sea trout from otherwise usable habitat and force them to return early to freshwater. Further, a method based on a bio-hydrodynamic model was developed to serve as a proxy for these indicators. The method accounted for the size, migration timing and spatial extent of sea trout and was demonstrated in 2 Norwegian salmon aquaculture production areas, Hardangerfjord (PO3) and Romsdalsfjord (PO5), and 2 focal rivers from within each fjord. Based on these comparisons, we exemplify how the change in marine living area and marine feeding time differed between PO3 and PO5 and within the areas. Sea trout migrating to sea late (June 5) were always more affected by lice than those migrating early (April 24) or at intermediate dates (May 15). Our estimates revealed dramatic potential impacts of salmon lice on sea trout populations, which were greatly influenced by spatial and temporal aspects. Considering the negative impacts of salmon lice on sea trout, a holistic view of environmental interactions between aquaculture and wild species that depend on habitats exploited for production is necessary.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.