T. Dempster, K. Overton, S. Bui, L. Stien, F. Oppedal, Ø. Karlsen, A. Coates, B. Phillips, L. Barrett
{"title":"养殖鲑鱼推动了挪威寄生鲑鱼虱的丰富、生态和进化","authors":"T. Dempster, K. Overton, S. Bui, L. Stien, F. Oppedal, Ø. Karlsen, A. Coates, B. Phillips, L. Barrett","doi":"10.3354/AEI00402","DOIUrl":null,"url":null,"abstract":"Sea cage fish farming is typically open to the environment, with disease transmission possible between farmed and wild hosts. In salmonid aquaculture, salmon louse Lepeophtheirus salmonis infestations cause production losses, reduce welfare for farmed fish and increase infestation rates for wild fish populations. The high density of hosts in farms likely also shifts the coevolutionary arms race between host and parasite, with ecological and evolutionary consequences for the salmon louse. Using farm-reported salmon and louse abundances and publicly reported estimates of wild salmonid host abundances and the salmon lice they carry, we estimated (1) the relative abundance of farmed and wild salmonid hosts and (2) the relative importance of each for the abundance of salmon lice for the coastal zone of Norway from 1998 to 2017. Farmed hosts increased in importance over time with the expansion of the industry. From 2013 to 2017, farmed salmonids outnumbered wild salmonids by 267−281:1. By 2017, farmed salmonids accounted for 99.6% of available hosts and produced 99.1% of adult female salmon lice and 97.6% of mated (ovigerous) adult female salmon lice in Norwegian coastal waters. The persistent dominance of farmed hosts has clear implications: (1) management decisions that aim to limit lice abundance can be guided by lice data from farms alone, as lice on wild salmonids make a trivial contribution to the national lice population; and (2) strategies to prevent or treat lice infestations are vulnerable to the evolution of resistance, as the pool of wild hosts is inconsequential and will not act as a refuge large enough to stem the evolution of resistance. As the Norwegian salmon industry expands and salmon lice infestations continue, farmed salmon will drive the ecology and evolution of salmon lice.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Farmed salmonids drive the abundance, ecology and evolution of parasitic salmon lice in Norway\",\"authors\":\"T. Dempster, K. Overton, S. Bui, L. Stien, F. Oppedal, Ø. Karlsen, A. Coates, B. Phillips, L. Barrett\",\"doi\":\"10.3354/AEI00402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea cage fish farming is typically open to the environment, with disease transmission possible between farmed and wild hosts. In salmonid aquaculture, salmon louse Lepeophtheirus salmonis infestations cause production losses, reduce welfare for farmed fish and increase infestation rates for wild fish populations. The high density of hosts in farms likely also shifts the coevolutionary arms race between host and parasite, with ecological and evolutionary consequences for the salmon louse. Using farm-reported salmon and louse abundances and publicly reported estimates of wild salmonid host abundances and the salmon lice they carry, we estimated (1) the relative abundance of farmed and wild salmonid hosts and (2) the relative importance of each for the abundance of salmon lice for the coastal zone of Norway from 1998 to 2017. Farmed hosts increased in importance over time with the expansion of the industry. From 2013 to 2017, farmed salmonids outnumbered wild salmonids by 267−281:1. By 2017, farmed salmonids accounted for 99.6% of available hosts and produced 99.1% of adult female salmon lice and 97.6% of mated (ovigerous) adult female salmon lice in Norwegian coastal waters. The persistent dominance of farmed hosts has clear implications: (1) management decisions that aim to limit lice abundance can be guided by lice data from farms alone, as lice on wild salmonids make a trivial contribution to the national lice population; and (2) strategies to prevent or treat lice infestations are vulnerable to the evolution of resistance, as the pool of wild hosts is inconsequential and will not act as a refuge large enough to stem the evolution of resistance. As the Norwegian salmon industry expands and salmon lice infestations continue, farmed salmon will drive the ecology and evolution of salmon lice.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00402\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00402","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Farmed salmonids drive the abundance, ecology and evolution of parasitic salmon lice in Norway
Sea cage fish farming is typically open to the environment, with disease transmission possible between farmed and wild hosts. In salmonid aquaculture, salmon louse Lepeophtheirus salmonis infestations cause production losses, reduce welfare for farmed fish and increase infestation rates for wild fish populations. The high density of hosts in farms likely also shifts the coevolutionary arms race between host and parasite, with ecological and evolutionary consequences for the salmon louse. Using farm-reported salmon and louse abundances and publicly reported estimates of wild salmonid host abundances and the salmon lice they carry, we estimated (1) the relative abundance of farmed and wild salmonid hosts and (2) the relative importance of each for the abundance of salmon lice for the coastal zone of Norway from 1998 to 2017. Farmed hosts increased in importance over time with the expansion of the industry. From 2013 to 2017, farmed salmonids outnumbered wild salmonids by 267−281:1. By 2017, farmed salmonids accounted for 99.6% of available hosts and produced 99.1% of adult female salmon lice and 97.6% of mated (ovigerous) adult female salmon lice in Norwegian coastal waters. The persistent dominance of farmed hosts has clear implications: (1) management decisions that aim to limit lice abundance can be guided by lice data from farms alone, as lice on wild salmonids make a trivial contribution to the national lice population; and (2) strategies to prevent or treat lice infestations are vulnerable to the evolution of resistance, as the pool of wild hosts is inconsequential and will not act as a refuge large enough to stem the evolution of resistance. As the Norwegian salmon industry expands and salmon lice infestations continue, farmed salmon will drive the ecology and evolution of salmon lice.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.