J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito
{"title":"利用Ecopath模拟淡水鱼塘系统的营养网:迈向更好的混养管理","authors":"J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito","doi":"10.3354/AEI00406","DOIUrl":null,"url":null,"abstract":"Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management\",\"authors\":\"J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito\",\"doi\":\"10.3354/AEI00406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00406\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00406","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management
Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.