利用Ecopath模拟淡水鱼塘系统的营养网:迈向更好的混养管理

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2021-01-01 DOI:10.3354/AEI00406
J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito
{"title":"利用Ecopath模拟淡水鱼塘系统的营养网:迈向更好的混养管理","authors":"J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito","doi":"10.3354/AEI00406","DOIUrl":null,"url":null,"abstract":"Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management\",\"authors\":\"J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito\",\"doi\":\"10.3354/AEI00406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00406\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00406","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 4

摘要

在欧洲,淡水池塘混养面临着许多挑战。必须开发适当的工具来更好地了解和管理池塘生态系统中的营养相互作用。本研究旨在通过实验和营养网建模相结合的方法,了解鲤鱼混养过程中的营养相互作用,并对鱼的食性进行推断。我们在与蟑螂和鲈鱼混养的小鱼塘中进行了实验,并使用Ecopath和Ecosim软件对食物网进行了表征。试验进行了3个处理的2个重复:低鱼密度和无配方饲料的半放养池塘、鱼密度和配方饲料为两倍的集约化池塘和种植泻湖的集约化池塘。定义了十个营养类群来描述食物网。建模过程使我们能够估计每个营养组的饮食。饲料和非饲料处理的鱼粮差异很大,因为鲤鱼在有条件时主要以配方饲料为食。蟑螂表现出营养可塑性,使其饮食适应可用的资源。底栖大型无脊椎动物和浮游动物被集中捕食;它们成为鱼类生产的限制因素,并依赖于浮游植物的供应。碎屑和浮游植物是各处理的主要营养来源,但未得到有效利用。这些结果为改进混养提供了一些见解。特别是,它们促进更好地管理浮游动物和大型无脊椎动物作为目标物种的食物来源,并促进鱼类群落的更好平衡,以更有效地利用资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management
Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Fish dispersal from a sabotage-mediated massive escape event Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds CORRECTION: Temporal variation in sea trout Salmo trutta life history traits in the Erriff River, western Ireland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1