R. Mercaldo-Allen, P. Clark, Yuan Liu, G. Phillips, Dylan H. Redman, P. Auster, Erick Estela, L. Milke, Alison Verkade, J. Rose
{"title":"探索视频和eDNA元条形码方法评价牡蛎养殖网箱作为鱼类栖息地","authors":"R. Mercaldo-Allen, P. Clark, Yuan Liu, G. Phillips, Dylan H. Redman, P. Auster, Erick Estela, L. Milke, Alison Verkade, J. Rose","doi":"10.3354/AEI00408","DOIUrl":null,"url":null,"abstract":"Multi-tiered oyster aquaculture cages may provide habitat for fish assemblages similar to natural structured seafloor. Methods were developed to assess fish assemblages associated with aquaculture gear and boulder habitat using underwater video census combined with environmental DNA (eDNA) metabarcoding. Action cameras were mounted on 3 aquaculture cages at a commercial eastern oyster Crassostrea virginica farm (‘cage’) and among 3 boulders on a natural rock reef (‘boulder’) from June to August 2017 in Long Island Sound, USA. Interval and continuous video recording strategies were tested. During interval recording, cameras collected 8 min video segments hourly from 07:00 to 19:00 h on cages only. Continuous video was also collected for 2-3 h on oyster cages and boulders. Data loggers recorded light intensity and current speed. Seawater was collected for eDNA metabarcoding on the reef and farm. MaxN measurements of fish abundance were calculated in video, and 7 fish species were observed. Black sea bass Centropristis striata, cunner Tautogolabrus adspersus, scup Stenotomus chrysops, and tautog Tautoga onitis were the most abundant species observed in both oyster cage and boulder videos. In continuous video, black sea bass, scup, and tautog were observed more frequently and at higher abundance on the cage farm, while cunner were observed more frequently and at higher abundance on boulders within the rock reef. eDNA metabarcoding detected 42 fish species at the farm and reef. Six species were detected using both methods. Applied in tandem, video recording and eDNA provided a comprehensive approach for describing fish assemblages in difficult to sample structured oyster aquaculture and boulder habitats.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploring video and eDNA metabarcoding methods to assess oyster aquaculture cages as fish habitat\",\"authors\":\"R. Mercaldo-Allen, P. Clark, Yuan Liu, G. Phillips, Dylan H. Redman, P. Auster, Erick Estela, L. Milke, Alison Verkade, J. Rose\",\"doi\":\"10.3354/AEI00408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-tiered oyster aquaculture cages may provide habitat for fish assemblages similar to natural structured seafloor. Methods were developed to assess fish assemblages associated with aquaculture gear and boulder habitat using underwater video census combined with environmental DNA (eDNA) metabarcoding. Action cameras were mounted on 3 aquaculture cages at a commercial eastern oyster Crassostrea virginica farm (‘cage’) and among 3 boulders on a natural rock reef (‘boulder’) from June to August 2017 in Long Island Sound, USA. Interval and continuous video recording strategies were tested. During interval recording, cameras collected 8 min video segments hourly from 07:00 to 19:00 h on cages only. Continuous video was also collected for 2-3 h on oyster cages and boulders. Data loggers recorded light intensity and current speed. Seawater was collected for eDNA metabarcoding on the reef and farm. MaxN measurements of fish abundance were calculated in video, and 7 fish species were observed. Black sea bass Centropristis striata, cunner Tautogolabrus adspersus, scup Stenotomus chrysops, and tautog Tautoga onitis were the most abundant species observed in both oyster cage and boulder videos. In continuous video, black sea bass, scup, and tautog were observed more frequently and at higher abundance on the cage farm, while cunner were observed more frequently and at higher abundance on boulders within the rock reef. eDNA metabarcoding detected 42 fish species at the farm and reef. Six species were detected using both methods. Applied in tandem, video recording and eDNA provided a comprehensive approach for describing fish assemblages in difficult to sample structured oyster aquaculture and boulder habitats.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/AEI00408\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/AEI00408","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Exploring video and eDNA metabarcoding methods to assess oyster aquaculture cages as fish habitat
Multi-tiered oyster aquaculture cages may provide habitat for fish assemblages similar to natural structured seafloor. Methods were developed to assess fish assemblages associated with aquaculture gear and boulder habitat using underwater video census combined with environmental DNA (eDNA) metabarcoding. Action cameras were mounted on 3 aquaculture cages at a commercial eastern oyster Crassostrea virginica farm (‘cage’) and among 3 boulders on a natural rock reef (‘boulder’) from June to August 2017 in Long Island Sound, USA. Interval and continuous video recording strategies were tested. During interval recording, cameras collected 8 min video segments hourly from 07:00 to 19:00 h on cages only. Continuous video was also collected for 2-3 h on oyster cages and boulders. Data loggers recorded light intensity and current speed. Seawater was collected for eDNA metabarcoding on the reef and farm. MaxN measurements of fish abundance were calculated in video, and 7 fish species were observed. Black sea bass Centropristis striata, cunner Tautogolabrus adspersus, scup Stenotomus chrysops, and tautog Tautoga onitis were the most abundant species observed in both oyster cage and boulder videos. In continuous video, black sea bass, scup, and tautog were observed more frequently and at higher abundance on the cage farm, while cunner were observed more frequently and at higher abundance on boulders within the rock reef. eDNA metabarcoding detected 42 fish species at the farm and reef. Six species were detected using both methods. Applied in tandem, video recording and eDNA provided a comprehensive approach for describing fish assemblages in difficult to sample structured oyster aquaculture and boulder habitats.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.