利用质量平衡模型分析黄河口生态区内双壳类水产养殖的生态承载力

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2022-01-01 DOI:10.3354/aei00430
Q. Zhao, H. Huang, Y. Zhu, M. Cao, L. Zhao, X. Hong, J. Chu
{"title":"利用质量平衡模型分析黄河口生态区内双壳类水产养殖的生态承载力","authors":"Q. Zhao, H. Huang, Y. Zhu, M. Cao, L. Zhao, X. Hong, J. Chu","doi":"10.3354/aei00430","DOIUrl":null,"url":null,"abstract":": As the largest aquaculture producer in the world, China is facing the challenge of maintaining sustainability while continuing to develop the aquaculture industry to meet socio-economic needs. Models of trophic structure and energy flow can be used to analyse ecological carrying capacity in order to determine whether a large and rapidly increasing aquaculture industry potentially puts sustainable development at risk. The Yellow River Estuary ecoregion in Shandong Province, China, is an ecologically important region, with extensive bivalve aquaculture that is increasing rapidly at an overall growth rate of 4% annually during recent decades. A trophic mass-balance model was used to analyse the ecological carrying capacity of bivalve aquaculture in this ecoregion. The biomass of cultured bivalves is currently 13.3 t km −2 and could be increased to 62.0 t km −2 without exceeding the ecological carrying capacity. Zooplankton are a key factor limiting the ecological carrying capacity and represent a sensitive functional group within the food web system in this ecoregion. At the ecological carrying capacity of cultured bivalves in the Yellow River Estuary ecoregion, harvests would amount to 353.2 t km −2 yr −1 or a total of 4.2 million t yr −1 in this region. If the current average rate of growth in aquaculture in China is maintained, under cautious development, the biomass of cultured bivalves would reach half of the estimated ecological carrying capacity (31.0 t km −2 ) after 20 yr. This implies that there is capacity for sustainable development of bivalve aquaculture under current environmental conditions.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysing ecological carrying capacity of bivalve aquaculture within the Yellow River Estuary ecoregion through mass-balance modelling\",\"authors\":\"Q. Zhao, H. Huang, Y. Zhu, M. Cao, L. Zhao, X. Hong, J. Chu\",\"doi\":\"10.3354/aei00430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": As the largest aquaculture producer in the world, China is facing the challenge of maintaining sustainability while continuing to develop the aquaculture industry to meet socio-economic needs. Models of trophic structure and energy flow can be used to analyse ecological carrying capacity in order to determine whether a large and rapidly increasing aquaculture industry potentially puts sustainable development at risk. The Yellow River Estuary ecoregion in Shandong Province, China, is an ecologically important region, with extensive bivalve aquaculture that is increasing rapidly at an overall growth rate of 4% annually during recent decades. A trophic mass-balance model was used to analyse the ecological carrying capacity of bivalve aquaculture in this ecoregion. The biomass of cultured bivalves is currently 13.3 t km −2 and could be increased to 62.0 t km −2 without exceeding the ecological carrying capacity. Zooplankton are a key factor limiting the ecological carrying capacity and represent a sensitive functional group within the food web system in this ecoregion. At the ecological carrying capacity of cultured bivalves in the Yellow River Estuary ecoregion, harvests would amount to 353.2 t km −2 yr −1 or a total of 4.2 million t yr −1 in this region. If the current average rate of growth in aquaculture in China is maintained, under cautious development, the biomass of cultured bivalves would reach half of the estimated ecological carrying capacity (31.0 t km −2 ) after 20 yr. This implies that there is capacity for sustainable development of bivalve aquaculture under current environmental conditions.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/aei00430\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00430","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 3

摘要

作为世界上最大的水产养殖生产国,中国在继续发展水产养殖业以满足社会经济需求的同时,面临着保持可持续性的挑战。营养结构和能量流模型可用于分析生态承载能力,以确定大型和快速增长的水产养殖业是否可能危及可持续发展。中国山东省黄河口生态区是一个重要的生态区域,近几十年来,该地区广泛开展双壳类水产养殖,并以每年4%的总体增长率快速增长。采用营养物质平衡模型对该生态区双壳类养殖的生态承载力进行了分析。目前养殖双壳类的生物量为13.3 t km−2,在不超过生态承载力的情况下可增加到62.0 t km−2。浮游动物是限制生态承载力的关键因素,是该生态区食物网系统中一个敏感的功能群。以黄河口生态区内养殖双壳类的生态承载力计算,该区域的养殖产量可达353.2 t km−2 yr−1,总产量为420万t t yr−1。如果保持目前中国水产养殖的平均增长速度,在谨慎发展的情况下,养殖双壳类的生物量将在20年后达到估计生态承载能力(31.0 t km−2)的一半,这意味着在目前的环境条件下,双壳类养殖具有可持续发展的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysing ecological carrying capacity of bivalve aquaculture within the Yellow River Estuary ecoregion through mass-balance modelling
: As the largest aquaculture producer in the world, China is facing the challenge of maintaining sustainability while continuing to develop the aquaculture industry to meet socio-economic needs. Models of trophic structure and energy flow can be used to analyse ecological carrying capacity in order to determine whether a large and rapidly increasing aquaculture industry potentially puts sustainable development at risk. The Yellow River Estuary ecoregion in Shandong Province, China, is an ecologically important region, with extensive bivalve aquaculture that is increasing rapidly at an overall growth rate of 4% annually during recent decades. A trophic mass-balance model was used to analyse the ecological carrying capacity of bivalve aquaculture in this ecoregion. The biomass of cultured bivalves is currently 13.3 t km −2 and could be increased to 62.0 t km −2 without exceeding the ecological carrying capacity. Zooplankton are a key factor limiting the ecological carrying capacity and represent a sensitive functional group within the food web system in this ecoregion. At the ecological carrying capacity of cultured bivalves in the Yellow River Estuary ecoregion, harvests would amount to 353.2 t km −2 yr −1 or a total of 4.2 million t yr −1 in this region. If the current average rate of growth in aquaculture in China is maintained, under cautious development, the biomass of cultured bivalves would reach half of the estimated ecological carrying capacity (31.0 t km −2 ) after 20 yr. This implies that there is capacity for sustainable development of bivalve aquaculture under current environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds CORRECTION: Temporal variation in sea trout Salmo trutta life history traits in the Erriff River, western Ireland Quantification of finfish assemblages associated with mussel and seaweed farms in southwest UK provides evidence of potential benefits to fisheries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1