水产养殖场野生鱼类监测的新方法:利用计算机视觉分析野生鱼类的存在

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2022-01-01 DOI:10.3354/aei00432
K. Banno, H. Kaland, A. Crescitelli, SA Tuene, GH Aas, LC Gansel
{"title":"水产养殖场野生鱼类监测的新方法:利用计算机视觉分析野生鱼类的存在","authors":"K. Banno, H. Kaland, A. Crescitelli, SA Tuene, GH Aas, LC Gansel","doi":"10.3354/aei00432","DOIUrl":null,"url":null,"abstract":": Aquaculture in open sea-cages attracts large numbers of wild fish. Such aggregations may have various impacts on farmed and wild fish, the environment, fish farming, and fisheries activities. Therefore, it is important to understand the patterns and amount of wild fish aggregations at aquaculture sites. In recent years, the use of artificial intelligence (AI) for automated detection of fish has seen major advancements, and this technology can be applied to wild fish abundance monitoring. We present a monitoring procedure that uses a combination of multiple cameras and automatic fish detection by AI. Wild fish in images collected around commercial salmon cages in Norway were automatically identified and counted by a system based on the real-time object detector framework YOLOv4, and the results were compared with manual human counts. Overall, the automatic system resulted in higher fish numbers than the manual counts. The performance of the system was satisfactory regarding false negatives (i.e. non-detected fish), while the false positive (i.e. objects wrongly detected as fish) rate was above 7%, which was considered an acceptable limit of error in comparison with the manual counts. The main causes of false positives were confusing backgrounds and mismatches between detection thresholds for automated and manual counts. However, these issues can be overcome by using training images that represent real scenarios (i.e. various backgrounds and fish densities) and setting proper detection thresholds. We present here a procedure with great potential for autonomous monitoring of wild fish abundance at aquaculture sites.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel approach for wild fish monitoring at aquaculture sites: wild fish presence analysis using computer vision\",\"authors\":\"K. Banno, H. Kaland, A. Crescitelli, SA Tuene, GH Aas, LC Gansel\",\"doi\":\"10.3354/aei00432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Aquaculture in open sea-cages attracts large numbers of wild fish. Such aggregations may have various impacts on farmed and wild fish, the environment, fish farming, and fisheries activities. Therefore, it is important to understand the patterns and amount of wild fish aggregations at aquaculture sites. In recent years, the use of artificial intelligence (AI) for automated detection of fish has seen major advancements, and this technology can be applied to wild fish abundance monitoring. We present a monitoring procedure that uses a combination of multiple cameras and automatic fish detection by AI. Wild fish in images collected around commercial salmon cages in Norway were automatically identified and counted by a system based on the real-time object detector framework YOLOv4, and the results were compared with manual human counts. Overall, the automatic system resulted in higher fish numbers than the manual counts. The performance of the system was satisfactory regarding false negatives (i.e. non-detected fish), while the false positive (i.e. objects wrongly detected as fish) rate was above 7%, which was considered an acceptable limit of error in comparison with the manual counts. The main causes of false positives were confusing backgrounds and mismatches between detection thresholds for automated and manual counts. However, these issues can be overcome by using training images that represent real scenarios (i.e. various backgrounds and fish densities) and setting proper detection thresholds. We present here a procedure with great potential for autonomous monitoring of wild fish abundance at aquaculture sites.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/aei00432\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00432","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 2

摘要

:开放式网箱的水产养殖吸引了大量的野生鱼类。这种聚集可能对养殖鱼类和野生鱼类、环境、鱼类养殖和渔业活动产生各种影响。因此,了解水产养殖场野生鱼类的聚集模式和数量具有重要意义。近年来,利用人工智能(AI)自动检测鱼类取得了重大进展,这项技术可以应用于野生鱼类丰度监测。我们提出了一种监测程序,该程序结合了多个摄像头和人工智能的自动鱼类检测。利用基于实时目标检测框架YOLOv4的系统自动识别和计数挪威商业鲑鱼笼周围的野生鱼类图像,并将结果与人工计数进行比较。总的来说,自动系统的鱼数量高于人工计数。该系统在假阴性(即未检测到鱼)方面的表现令人满意,而假阳性(即被错误检测为鱼的物体)率高于7%,与人工计数相比,这被认为是可接受的误差限制。误报的主要原因是背景混淆以及自动计数和手动计数检测阈值之间的不匹配。然而,这些问题可以通过使用代表真实场景(即各种背景和鱼类密度)的训练图像并设置适当的检测阈值来克服。我们在这里提出了一个具有巨大潜力的程序,用于自主监测水产养殖场的野生鱼类丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach for wild fish monitoring at aquaculture sites: wild fish presence analysis using computer vision
: Aquaculture in open sea-cages attracts large numbers of wild fish. Such aggregations may have various impacts on farmed and wild fish, the environment, fish farming, and fisheries activities. Therefore, it is important to understand the patterns and amount of wild fish aggregations at aquaculture sites. In recent years, the use of artificial intelligence (AI) for automated detection of fish has seen major advancements, and this technology can be applied to wild fish abundance monitoring. We present a monitoring procedure that uses a combination of multiple cameras and automatic fish detection by AI. Wild fish in images collected around commercial salmon cages in Norway were automatically identified and counted by a system based on the real-time object detector framework YOLOv4, and the results were compared with manual human counts. Overall, the automatic system resulted in higher fish numbers than the manual counts. The performance of the system was satisfactory regarding false negatives (i.e. non-detected fish), while the false positive (i.e. objects wrongly detected as fish) rate was above 7%, which was considered an acceptable limit of error in comparison with the manual counts. The main causes of false positives were confusing backgrounds and mismatches between detection thresholds for automated and manual counts. However, these issues can be overcome by using training images that represent real scenarios (i.e. various backgrounds and fish densities) and setting proper detection thresholds. We present here a procedure with great potential for autonomous monitoring of wild fish abundance at aquaculture sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds CORRECTION: Temporal variation in sea trout Salmo trutta life history traits in the Erriff River, western Ireland Quantification of finfish assemblages associated with mussel and seaweed farms in southwest UK provides evidence of potential benefits to fisheries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1