牡蛎培养对大亚湾珊瑚礁浮游细菌群落组成和功能的影响

IF 2.2 2区 农林科学 Q2 FISHERIES Aquaculture Environment Interactions Pub Date : 2021-01-01 DOI:10.3354/aei00421
F. Tong, P. Zhang, X. Zhang, P. Chen
{"title":"牡蛎培养对大亚湾珊瑚礁浮游细菌群落组成和功能的影响","authors":"F. Tong, P. Zhang, X. Zhang, P. Chen","doi":"10.3354/aei00421","DOIUrl":null,"url":null,"abstract":": Subtropical coral reefs along the coast are facing multiple pressures. Mariculture is one of the main sources of such pressure. Oyster culture has become a worldwide phenomenon in coastal ecosystems. Due to the high filtration efficiency of oysters, their culture has helped to purify some coastal waters. However, high-density oyster culture has also had negative effects on coastal ecosystems, including the loss of natural habitat, changes in hydrology, cross infection of corals with pathogenic bacteria, and changes to the structure and function of bacterioplankton communities. In this study, the effect of oyster culture on coral reefs was characterized based on variability in the structure and function of bacterioplankton communities. Using 16S rRNA gene sequencing, a comprehensive bacterioplankton reference database was constructed for coral reef habitats associated with oyster culture and subjected to different disturbance gradients. Small shifts in the surrounding coral reef environment caused by oyster culture disturbance were detected by comparing the structure and function of bacterioplankton communities with biogeochemical parameters. The measured chemical dynamics explained 71.15% of the bacterioplankton community variability between habitats. Oyster culture increased the richness and diversity of bacterioplank-ton communities. Species composition similarity was highest between the oyster culture area and the nearest coral reef habitat. The spatial turnover in the bacterioplankton community was characterized by less uniform community assembly patterns. The bacterioplankton function of reefs relatively far from anthropogenic disturbance differed from that of those closer to such disturbances. Our results also show that the variability in structure and function of bacterioplankton communities between oyster culture areas and coral reef areas was mainly driven by salinity and ammonium. Oyster culture can impact bacterioplankton community composition and dynamics around coral reef habitats. The results provide an important context for developing frameworks for managing ecological interactions among oyster cultures and coral reef habitats of concern","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of oyster culture on coral reef bacterioplankton community composition and function in Daya Bay, China\",\"authors\":\"F. Tong, P. Zhang, X. Zhang, P. Chen\",\"doi\":\"10.3354/aei00421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Subtropical coral reefs along the coast are facing multiple pressures. Mariculture is one of the main sources of such pressure. Oyster culture has become a worldwide phenomenon in coastal ecosystems. Due to the high filtration efficiency of oysters, their culture has helped to purify some coastal waters. However, high-density oyster culture has also had negative effects on coastal ecosystems, including the loss of natural habitat, changes in hydrology, cross infection of corals with pathogenic bacteria, and changes to the structure and function of bacterioplankton communities. In this study, the effect of oyster culture on coral reefs was characterized based on variability in the structure and function of bacterioplankton communities. Using 16S rRNA gene sequencing, a comprehensive bacterioplankton reference database was constructed for coral reef habitats associated with oyster culture and subjected to different disturbance gradients. Small shifts in the surrounding coral reef environment caused by oyster culture disturbance were detected by comparing the structure and function of bacterioplankton communities with biogeochemical parameters. The measured chemical dynamics explained 71.15% of the bacterioplankton community variability between habitats. Oyster culture increased the richness and diversity of bacterioplank-ton communities. Species composition similarity was highest between the oyster culture area and the nearest coral reef habitat. The spatial turnover in the bacterioplankton community was characterized by less uniform community assembly patterns. The bacterioplankton function of reefs relatively far from anthropogenic disturbance differed from that of those closer to such disturbances. Our results also show that the variability in structure and function of bacterioplankton communities between oyster culture areas and coral reef areas was mainly driven by salinity and ammonium. Oyster culture can impact bacterioplankton community composition and dynamics around coral reef habitats. The results provide an important context for developing frameworks for managing ecological interactions among oyster cultures and coral reef habitats of concern\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/aei00421\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00421","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 4

摘要

:沿海的亚热带珊瑚礁正面临多重压力。海水养殖是这种压力的主要来源之一。牡蛎养殖已成为沿海生态系统中的一种世界性现象。由于牡蛎的过滤效率高,它们的培养有助于净化一些沿海水域。然而,高密度牡蛎养殖也对沿海生态系统产生了负面影响,包括自然栖息地的丧失、水文的变化、珊瑚与致病菌的交叉感染以及浮游细菌群落结构和功能的变化。在本研究中,牡蛎养殖对珊瑚礁的影响是基于浮游细菌群落结构和功能的变化来表征的。利用16S rRNA基因测序技术,构建了与牡蛎养殖相关、受不同扰动梯度的珊瑚礁生境浮游细菌综合参考数据库。通过比较浮游细菌群落的结构和功能与生物地球化学参数,发现牡蛎养殖干扰对周围珊瑚礁环境造成的微小变化。测量的化学动力学解释了71.15%的浮游细菌群落在不同生境之间的变异。牡蛎培养增加了浮游细菌群落的丰富度和多样性。牡蛎养殖区与最近的珊瑚礁生境物种组成相似性最高。浮游细菌群落的空间更替具有群落聚集格局不均匀的特点。相对远离人为干扰的珊瑚礁的浮游细菌功能与接近人为干扰的珊瑚礁的浮游细菌功能不同。牡蛎养殖区和珊瑚礁区浮游细菌群落结构和功能的差异主要受盐度和铵态盐的驱动。牡蛎培养可以影响珊瑚礁栖息地周围浮游细菌群落的组成和动态。这些结果为制定管理牡蛎养殖与珊瑚礁栖息地之间生态相互作用的框架提供了重要背景
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of oyster culture on coral reef bacterioplankton community composition and function in Daya Bay, China
: Subtropical coral reefs along the coast are facing multiple pressures. Mariculture is one of the main sources of such pressure. Oyster culture has become a worldwide phenomenon in coastal ecosystems. Due to the high filtration efficiency of oysters, their culture has helped to purify some coastal waters. However, high-density oyster culture has also had negative effects on coastal ecosystems, including the loss of natural habitat, changes in hydrology, cross infection of corals with pathogenic bacteria, and changes to the structure and function of bacterioplankton communities. In this study, the effect of oyster culture on coral reefs was characterized based on variability in the structure and function of bacterioplankton communities. Using 16S rRNA gene sequencing, a comprehensive bacterioplankton reference database was constructed for coral reef habitats associated with oyster culture and subjected to different disturbance gradients. Small shifts in the surrounding coral reef environment caused by oyster culture disturbance were detected by comparing the structure and function of bacterioplankton communities with biogeochemical parameters. The measured chemical dynamics explained 71.15% of the bacterioplankton community variability between habitats. Oyster culture increased the richness and diversity of bacterioplank-ton communities. Species composition similarity was highest between the oyster culture area and the nearest coral reef habitat. The spatial turnover in the bacterioplankton community was characterized by less uniform community assembly patterns. The bacterioplankton function of reefs relatively far from anthropogenic disturbance differed from that of those closer to such disturbances. Our results also show that the variability in structure and function of bacterioplankton communities between oyster culture areas and coral reef areas was mainly driven by salinity and ammonium. Oyster culture can impact bacterioplankton community composition and dynamics around coral reef habitats. The results provide an important context for developing frameworks for managing ecological interactions among oyster cultures and coral reef habitats of concern
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Environment Interactions
Aquaculture Environment Interactions FISHERIES-MARINE & FRESHWATER BIOLOGY
CiteScore
4.90
自引率
13.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with inter­actions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include: -Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture. -Effects on benthic and pelagic assemblages or pro­cesses that are related to aquaculture activities. -Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations. -Parasite and pathogen interactions between farmed and wild stocks. -Comparisons of the environmental effects of traditional and organic aquaculture. -Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild. -Effects of capture-based aquaculture (ranching). -Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures. -Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems. -Effects of climate change and environmental variability on aquaculture activities. -Modelling of aquaculture–environment interactions; ­assessment of carrying capacity. -Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport). -Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.
期刊最新文献
Fish dispersal from a sabotage-mediated massive escape event Effects on enzyme activity and DNA integrity in rainbow trout Oncorhynchus mykiss exposed to fish farm effluents Invasion risk to the United States from Arapaima spp. hinges on climate suitability Accumulation of microcystins, bacterial community composition and mlrA gene abundance in shrimp culture ponds Quantification of finfish assemblages associated with mussel and seaweed farms in southwest UK provides evidence of potential benefits to fisheries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1