A. Tórz, M. Burda, M. Półgęsek, J. Sadowski, A. Nędzarek
{"title":"植物栽培中介质填床法综合营养型水产养殖系统中磷的转化","authors":"A. Tórz, M. Burda, M. Półgęsek, J. Sadowski, A. Nędzarek","doi":"10.3354/aei00424","DOIUrl":null,"url":null,"abstract":"The objective of this study was to trace the transformations of phosphorus in an integrated multitrophic aquaculture (IMTA) system and to determine whether the method of plant breeding influenced the dynamics of these changes. In the experiment, the media filled beds (MFB) method of plant cultivation was applied. Fish tanks were stocked with 200 common carp Cyprinus carpio, and hydroponic terraces were planted with 49 zantedeschia Zantedeschia sp. bulbs. Water samples were taken directly from the fish tanks immediately after each type of filtration (mechanical, biological and hydroponic). The basic forms of orthophosphates in the IMTA system included some H2PO4 ions but mostly HPO4. The higher supply of reactive phosphorus that occurred over time in the experiment may have contributed to a decrease in calcium ion concentration due to the formation of Ca3(PO4)2 and CaHPO4 salts, thus inactivating some of the phosphorus available to plants. Phosphorus may have also been inactivated in the sediment due to the formation of Mg3(PO4)2 and MgHPO4 salts after decreasing the concentration of calcium ions as a result of their precipitation in sediments. Mineralization of organic matter took place under aerobic conditions. Organic matter was a source of biogenic substances in the IMTA system. Experimental results showed that IMTA systems have significant potential to reduce phosphorus in aquaculture wastewater and thus provide a good environment for fish farming by improving water quality.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transformation of phosphorus in an experimental integrated multitrophic aquaculture system using the media filled beds method in plant cultivation\",\"authors\":\"A. Tórz, M. Burda, M. Półgęsek, J. Sadowski, A. Nędzarek\",\"doi\":\"10.3354/aei00424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study was to trace the transformations of phosphorus in an integrated multitrophic aquaculture (IMTA) system and to determine whether the method of plant breeding influenced the dynamics of these changes. In the experiment, the media filled beds (MFB) method of plant cultivation was applied. Fish tanks were stocked with 200 common carp Cyprinus carpio, and hydroponic terraces were planted with 49 zantedeschia Zantedeschia sp. bulbs. Water samples were taken directly from the fish tanks immediately after each type of filtration (mechanical, biological and hydroponic). The basic forms of orthophosphates in the IMTA system included some H2PO4 ions but mostly HPO4. The higher supply of reactive phosphorus that occurred over time in the experiment may have contributed to a decrease in calcium ion concentration due to the formation of Ca3(PO4)2 and CaHPO4 salts, thus inactivating some of the phosphorus available to plants. Phosphorus may have also been inactivated in the sediment due to the formation of Mg3(PO4)2 and MgHPO4 salts after decreasing the concentration of calcium ions as a result of their precipitation in sediments. Mineralization of organic matter took place under aerobic conditions. Organic matter was a source of biogenic substances in the IMTA system. Experimental results showed that IMTA systems have significant potential to reduce phosphorus in aquaculture wastewater and thus provide a good environment for fish farming by improving water quality.\",\"PeriodicalId\":8376,\"journal\":{\"name\":\"Aquaculture Environment Interactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Environment Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/aei00424\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Environment Interactions","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/aei00424","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Transformation of phosphorus in an experimental integrated multitrophic aquaculture system using the media filled beds method in plant cultivation
The objective of this study was to trace the transformations of phosphorus in an integrated multitrophic aquaculture (IMTA) system and to determine whether the method of plant breeding influenced the dynamics of these changes. In the experiment, the media filled beds (MFB) method of plant cultivation was applied. Fish tanks were stocked with 200 common carp Cyprinus carpio, and hydroponic terraces were planted with 49 zantedeschia Zantedeschia sp. bulbs. Water samples were taken directly from the fish tanks immediately after each type of filtration (mechanical, biological and hydroponic). The basic forms of orthophosphates in the IMTA system included some H2PO4 ions but mostly HPO4. The higher supply of reactive phosphorus that occurred over time in the experiment may have contributed to a decrease in calcium ion concentration due to the formation of Ca3(PO4)2 and CaHPO4 salts, thus inactivating some of the phosphorus available to plants. Phosphorus may have also been inactivated in the sediment due to the formation of Mg3(PO4)2 and MgHPO4 salts after decreasing the concentration of calcium ions as a result of their precipitation in sediments. Mineralization of organic matter took place under aerobic conditions. Organic matter was a source of biogenic substances in the IMTA system. Experimental results showed that IMTA systems have significant potential to reduce phosphorus in aquaculture wastewater and thus provide a good environment for fish farming by improving water quality.
期刊介绍:
AEI presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may be concerned with interactions between aquaculture and the environment from local to ecosystem scales, at all levels of organisation and investigation. Areas covered include:
-Pollution and nutrient inputs; bio-accumulation and impacts of chemical compounds used in aquaculture.
-Effects on benthic and pelagic assemblages or processes that are related to aquaculture activities.
-Interactions of wild fauna (invertebrates, fishes, birds, mammals) with aquaculture activities; genetic impacts on wild populations.
-Parasite and pathogen interactions between farmed and wild stocks.
-Comparisons of the environmental effects of traditional and organic aquaculture.
-Introductions of alien species; escape and intentional releases (seeding) of cultured organisms into the wild.
-Effects of capture-based aquaculture (ranching).
-Interactions of aquaculture installations with biofouling organisms and consequences of biofouling control measures.
-Integrated multi-trophic aquaculture; comparisons of re-circulation and ‘open’ systems.
-Effects of climate change and environmental variability on aquaculture activities.
-Modelling of aquaculture–environment interactions; assessment of carrying capacity.
-Interactions between aquaculture and other industries (e.g. tourism, fisheries, transport).
-Policy and practice of aquaculture regulation directed towards environmental management; site selection, spatial planning, Integrated Coastal Zone Management, and eco-ethics.