{"title":"矿物油基磁流体的动态粘弹性研究","authors":"Zhanxian Li, Yifei Guo, Hujun Wang, Chengyao Deng, Jiahao Dong, Zhongru Song, Zhenkun Li","doi":"10.3390/magnetochemistry9060143","DOIUrl":null,"url":null,"abstract":"Magnetic fluid is a field-responsive intelligent fluid, which has the flow characteristics of liquid and the elastic properties of solid. Because of its unique properties, it has a strong application prospect in the fields of magnetic soft robot, intelligent sensor, and so on. Dynamic viscoelasticity is a significant index to investigate the performance of magnetic fluid in the application process. In this paper, the dynamic viscoelasticity of a homemade mineral oil-based magnetic fluid was investigated under oscillatory shear experimental conditions using an MCR302 rheometer, and the effects of different temperatures and magnetic fields on the dynamic viscoelasticity were examined. Amplitude sweeps tests showed that the value of the storage modulus remained constant within the linear viscoelastic region (LVE) and the stable structure was not destroyed. As the magnetic field strength increased or the temperature increased, the range of the linear viscoelastic zone decreased. At large amplitude, the loss modulus will first appear as a peak and then decrease. The frequency sweep experiment showed that the storage modulus and loss modulus increased with the increase in angular frequency, and the greater the magnetic field intensity, the longer the internal structure relaxation time. When the magnetic field was constant, the higher the temperature, the smaller the storage modulus and loss modulus of the magnetic fluid. At high temperature, the loss coefficient of mesmeric fluid was large, and the magnetic fluid was more viscous. The lower the temperature is, the smaller the loss coefficient of the magnetic fluid is, and the magnetic fluid is more pliant. The study of dynamic viscoelasticity of magnetic fluids lays the foundation for establishing the complete structure intrinsic relationship of magnetic fluids and provides guidance for the application of magnetic fluids in magnetic 3D printing, droplet robot, and smart wear.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Dynamic Viscoelasticity of a Mineral Oil-Based Magnetic Fluid\",\"authors\":\"Zhanxian Li, Yifei Guo, Hujun Wang, Chengyao Deng, Jiahao Dong, Zhongru Song, Zhenkun Li\",\"doi\":\"10.3390/magnetochemistry9060143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic fluid is a field-responsive intelligent fluid, which has the flow characteristics of liquid and the elastic properties of solid. Because of its unique properties, it has a strong application prospect in the fields of magnetic soft robot, intelligent sensor, and so on. Dynamic viscoelasticity is a significant index to investigate the performance of magnetic fluid in the application process. In this paper, the dynamic viscoelasticity of a homemade mineral oil-based magnetic fluid was investigated under oscillatory shear experimental conditions using an MCR302 rheometer, and the effects of different temperatures and magnetic fields on the dynamic viscoelasticity were examined. Amplitude sweeps tests showed that the value of the storage modulus remained constant within the linear viscoelastic region (LVE) and the stable structure was not destroyed. As the magnetic field strength increased or the temperature increased, the range of the linear viscoelastic zone decreased. At large amplitude, the loss modulus will first appear as a peak and then decrease. The frequency sweep experiment showed that the storage modulus and loss modulus increased with the increase in angular frequency, and the greater the magnetic field intensity, the longer the internal structure relaxation time. When the magnetic field was constant, the higher the temperature, the smaller the storage modulus and loss modulus of the magnetic fluid. At high temperature, the loss coefficient of mesmeric fluid was large, and the magnetic fluid was more viscous. The lower the temperature is, the smaller the loss coefficient of the magnetic fluid is, and the magnetic fluid is more pliant. The study of dynamic viscoelasticity of magnetic fluids lays the foundation for establishing the complete structure intrinsic relationship of magnetic fluids and provides guidance for the application of magnetic fluids in magnetic 3D printing, droplet robot, and smart wear.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9060143\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060143","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Study of Dynamic Viscoelasticity of a Mineral Oil-Based Magnetic Fluid
Magnetic fluid is a field-responsive intelligent fluid, which has the flow characteristics of liquid and the elastic properties of solid. Because of its unique properties, it has a strong application prospect in the fields of magnetic soft robot, intelligent sensor, and so on. Dynamic viscoelasticity is a significant index to investigate the performance of magnetic fluid in the application process. In this paper, the dynamic viscoelasticity of a homemade mineral oil-based magnetic fluid was investigated under oscillatory shear experimental conditions using an MCR302 rheometer, and the effects of different temperatures and magnetic fields on the dynamic viscoelasticity were examined. Amplitude sweeps tests showed that the value of the storage modulus remained constant within the linear viscoelastic region (LVE) and the stable structure was not destroyed. As the magnetic field strength increased or the temperature increased, the range of the linear viscoelastic zone decreased. At large amplitude, the loss modulus will first appear as a peak and then decrease. The frequency sweep experiment showed that the storage modulus and loss modulus increased with the increase in angular frequency, and the greater the magnetic field intensity, the longer the internal structure relaxation time. When the magnetic field was constant, the higher the temperature, the smaller the storage modulus and loss modulus of the magnetic fluid. At high temperature, the loss coefficient of mesmeric fluid was large, and the magnetic fluid was more viscous. The lower the temperature is, the smaller the loss coefficient of the magnetic fluid is, and the magnetic fluid is more pliant. The study of dynamic viscoelasticity of magnetic fluids lays the foundation for establishing the complete structure intrinsic relationship of magnetic fluids and provides guidance for the application of magnetic fluids in magnetic 3D printing, droplet robot, and smart wear.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.