春小麦精根皮层溶生通气组织的形成与扩展。不同涝渍强度对山齿鹑系SH 98 26幼苗的影响

IF 1 Q3 PLANT SCIENCES Plant Root Pub Date : 2010-01-01 DOI:10.3117/PLANTROOT.4.31
M. Haque, Fumitaka Abe, K. Kawaguchi
{"title":"春小麦精根皮层溶生通气组织的形成与扩展。不同涝渍强度对山齿鹑系SH 98 26幼苗的影响","authors":"M. Haque, Fumitaka Abe, K. Kawaguchi","doi":"10.3117/PLANTROOT.4.31","DOIUrl":null,"url":null,"abstract":"Aerenchyma promotes gas exchange between shoots and roots that supports plant to survive under waterlogged conditions. To understand the process of aerenchyma formation under waterlogged conditions, we developed a method for creating hypoxic pot-culture conditions using different water depths, and used this system to examine the effects of hypoxia on seedling growth and the anatomy of the seminal roots of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26). After 72 h of waterlogging, the redox potentials of a well-drained control and treatments with a water depth 15 cm below (T-15) and 3 cm above (T+3) the soil surface were +426, +357, and +292 mV, respectively. The root growth of the seedlings was reduced in T+3 plants while the shoot growth did not change significantly during 72 h waterlogging. Root anatomy study showed that wheat formed no aerenchyma under our control condition, but formed aerenchyma in the root cortex in response to hypoxia in T-15 and T+3 conditions. The aerenchyma was initially formed at 2 to 5 cm behind the root tip after 72 h in T-15 and 48 h in T+3. The aerenchyma in T+3 plants then extended by an additional 5 cm towards root base during the next 24 h. Evans blue staining indicated that wheat aerenchyma was lysigenous which resulted from degradation of cortical cells. Thus, the combination of the plant material and the pot-culture method can be used for a basic tool with which to analyse the molecular and physiological mechanisms of lysigenous aerenchyma formation in wheat.","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":"19 1","pages":"31-39"},"PeriodicalIF":1.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3117/PLANTROOT.4.31","citationCount":"37","resultStr":"{\"title\":\"Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging\",\"authors\":\"M. Haque, Fumitaka Abe, K. Kawaguchi\",\"doi\":\"10.3117/PLANTROOT.4.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerenchyma promotes gas exchange between shoots and roots that supports plant to survive under waterlogged conditions. To understand the process of aerenchyma formation under waterlogged conditions, we developed a method for creating hypoxic pot-culture conditions using different water depths, and used this system to examine the effects of hypoxia on seedling growth and the anatomy of the seminal roots of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26). After 72 h of waterlogging, the redox potentials of a well-drained control and treatments with a water depth 15 cm below (T-15) and 3 cm above (T+3) the soil surface were +426, +357, and +292 mV, respectively. The root growth of the seedlings was reduced in T+3 plants while the shoot growth did not change significantly during 72 h waterlogging. Root anatomy study showed that wheat formed no aerenchyma under our control condition, but formed aerenchyma in the root cortex in response to hypoxia in T-15 and T+3 conditions. The aerenchyma was initially formed at 2 to 5 cm behind the root tip after 72 h in T-15 and 48 h in T+3. The aerenchyma in T+3 plants then extended by an additional 5 cm towards root base during the next 24 h. Evans blue staining indicated that wheat aerenchyma was lysigenous which resulted from degradation of cortical cells. Thus, the combination of the plant material and the pot-culture method can be used for a basic tool with which to analyse the molecular and physiological mechanisms of lysigenous aerenchyma formation in wheat.\",\"PeriodicalId\":20205,\"journal\":{\"name\":\"Plant Root\",\"volume\":\"19 1\",\"pages\":\"31-39\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3117/PLANTROOT.4.31\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Root\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3117/PLANTROOT.4.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/PLANTROOT.4.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 37

摘要

通气组织促进芽和根之间的气体交换,支持植物在淹水条件下生存。为了解水分条件下通气组织的形成过程,建立了不同水深的缺氧盆栽条件,并利用该系统研究了缺氧对春小麦幼苗生长和种子根解剖的影响。山齿鹑线SH 98 26)。涝渍72 h后,排水良好对照和水深为15 cm以下(T-15)和3 cm以上(T+3)处理的氧化还原电位分别为+426、+357和+292 mV。涝渍72 h后,T+3植株根系生长下降,而茎部生长变化不显著。根系解剖研究表明,在我们的对照条件下,小麦没有形成通气组织,但在T-15和T+3条件下,缺氧在根皮层形成了通气组织。T+ 15和T+3分别在72 h和48 h后在根尖后2 ~ 5cm处形成气孔。在接下来的24小时内,T+3植株的通气组织向根基部又延伸了5cm。Evans蓝染色表明,小麦的通气组织是溶生性的,这是由于皮质细胞的降解所致。因此,将植物材料与盆栽方法相结合,可以作为分析小麦溶解性气孔形成的分子和生理机制的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging
Aerenchyma promotes gas exchange between shoots and roots that supports plant to survive under waterlogged conditions. To understand the process of aerenchyma formation under waterlogged conditions, we developed a method for creating hypoxic pot-culture conditions using different water depths, and used this system to examine the effects of hypoxia on seedling growth and the anatomy of the seminal roots of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26). After 72 h of waterlogging, the redox potentials of a well-drained control and treatments with a water depth 15 cm below (T-15) and 3 cm above (T+3) the soil surface were +426, +357, and +292 mV, respectively. The root growth of the seedlings was reduced in T+3 plants while the shoot growth did not change significantly during 72 h waterlogging. Root anatomy study showed that wheat formed no aerenchyma under our control condition, but formed aerenchyma in the root cortex in response to hypoxia in T-15 and T+3 conditions. The aerenchyma was initially formed at 2 to 5 cm behind the root tip after 72 h in T-15 and 48 h in T+3. The aerenchyma in T+3 plants then extended by an additional 5 cm towards root base during the next 24 h. Evans blue staining indicated that wheat aerenchyma was lysigenous which resulted from degradation of cortical cells. Thus, the combination of the plant material and the pot-culture method can be used for a basic tool with which to analyse the molecular and physiological mechanisms of lysigenous aerenchyma formation in wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Root
Plant Root PLANT SCIENCES-
CiteScore
1.50
自引率
0.00%
发文量
2
期刊介绍: Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.
期刊最新文献
Plant growth-enhancing traits of rhizobacteria isolated from brinjal, okra, and leaf mustard Development of a method for high-throughput quantitation of soil-surface roots of rice (Oryza sativa) and wild rice (O. glumaepatula) using an overhead scanner Acidic soil tolerance of sugarcane and Erianthus root assessed by cell membrane stability Strontium-induced mineral imbalance, cell death, and reactive oxygen species generation in Arabidopsis thaliana Genotypic variation in rice root system distribution and activity in response to short-term soil drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1