用紫四氮唑观察无土栽培植物根系脱氢酶活性的简单方法

IF 1 Q3 PLANT SCIENCES Plant Root Pub Date : 2010-01-01 DOI:10.3117/PLANTROOT.4.12
E. Kurzbaum, F. Kirzhner, R. Armon
{"title":"用紫四氮唑观察无土栽培植物根系脱氢酶活性的简单方法","authors":"E. Kurzbaum, F. Kirzhner, R. Armon","doi":"10.3117/PLANTROOT.4.12","DOIUrl":null,"url":null,"abstract":"A simple method for the evaluation of respiration activity of root cells of intact plants grown hydroponically and/or in agar medium was developed. The novelty of the present method is based on visual detection of dehydrogenase activity of plant roots by use of tetrazolium violet dye without destructive steps, allowing follow up of living and photosynthetically active growing plants and the impact of inhibitors such as sodium azide and cycloheximide. The results of this approach demonstrated that root tip cells comprise the highest dehydrogenase activity compared to other root parts. The non-expensive assay is easy to perform and allows to experi- ment a large variety of chemical compounds with potential inhibitory characteristics for plants.","PeriodicalId":20205,"journal":{"name":"Plant Root","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3117/PLANTROOT.4.12","citationCount":"13","resultStr":"{\"title\":\"A simple method for dehydrogenase activity visualization of intact plant roots grown in soilless culture using tetrazolium violet\",\"authors\":\"E. Kurzbaum, F. Kirzhner, R. Armon\",\"doi\":\"10.3117/PLANTROOT.4.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple method for the evaluation of respiration activity of root cells of intact plants grown hydroponically and/or in agar medium was developed. The novelty of the present method is based on visual detection of dehydrogenase activity of plant roots by use of tetrazolium violet dye without destructive steps, allowing follow up of living and photosynthetically active growing plants and the impact of inhibitors such as sodium azide and cycloheximide. The results of this approach demonstrated that root tip cells comprise the highest dehydrogenase activity compared to other root parts. The non-expensive assay is easy to perform and allows to experi- ment a large variety of chemical compounds with potential inhibitory characteristics for plants.\",\"PeriodicalId\":20205,\"journal\":{\"name\":\"Plant Root\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3117/PLANTROOT.4.12\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Root\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3117/PLANTROOT.4.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Root","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3117/PLANTROOT.4.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种评价水培和/或琼脂培养基中生长的完整植物根细胞呼吸活性的简单方法。本方法的新颖性是基于使用四氮唑紫染料对植物根系脱氢酶活性的视觉检测,而无需破坏性步骤,允许跟踪活的和光合活性的生长植物以及抑制剂如叠氮化钠和环己亚胺的影响。这种方法的结果表明,根尖细胞具有最高的脱氢酶活性相比,其他部分的根。不昂贵的分析是容易执行,并允许实验大量的化合物具有潜在的抑制特性的植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple method for dehydrogenase activity visualization of intact plant roots grown in soilless culture using tetrazolium violet
A simple method for the evaluation of respiration activity of root cells of intact plants grown hydroponically and/or in agar medium was developed. The novelty of the present method is based on visual detection of dehydrogenase activity of plant roots by use of tetrazolium violet dye without destructive steps, allowing follow up of living and photosynthetically active growing plants and the impact of inhibitors such as sodium azide and cycloheximide. The results of this approach demonstrated that root tip cells comprise the highest dehydrogenase activity compared to other root parts. The non-expensive assay is easy to perform and allows to experi- ment a large variety of chemical compounds with potential inhibitory characteristics for plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Root
Plant Root PLANT SCIENCES-
CiteScore
1.50
自引率
0.00%
发文量
2
期刊介绍: Plant Root publishes original papers, either theoretical or experimental, that provide novel insights into plant roots. The Journal’s subjects include, but are not restricted to, anatomy and morphology, cellular and molecular biology, biochemistry, physiology, interactions with soil, mineral nutrients, water, symbionts and pathogens, food culture, together with ecological, genetic and methodological aspects related to plant roots and rhizosphere. Work at any scale, from the molecular to the community level, is welcomed.
期刊最新文献
Plant growth-enhancing traits of rhizobacteria isolated from brinjal, okra, and leaf mustard Development of a method for high-throughput quantitation of soil-surface roots of rice (Oryza sativa) and wild rice (O. glumaepatula) using an overhead scanner Acidic soil tolerance of sugarcane and Erianthus root assessed by cell membrane stability Strontium-induced mineral imbalance, cell death, and reactive oxygen species generation in Arabidopsis thaliana Genotypic variation in rice root system distribution and activity in response to short-term soil drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1