C. W. Nascimento, L. Lima, Y. Silva, Caroline Miranda Biondi
{"title":"超镁质土壤与镍矿开采机会综述","authors":"C. W. Nascimento, L. Lima, Y. Silva, Caroline Miranda Biondi","doi":"10.36783/18069657rbcs20210099","DOIUrl":null,"url":null,"abstract":": Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology.","PeriodicalId":21215,"journal":{"name":"Revista Brasileira De Ciencia Do Solo","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultramafic soils and nickel phytomining opportunities: A review\",\"authors\":\"C. W. Nascimento, L. Lima, Y. Silva, Caroline Miranda Biondi\",\"doi\":\"10.36783/18069657rbcs20210099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology.\",\"PeriodicalId\":21215,\"journal\":{\"name\":\"Revista Brasileira De Ciencia Do Solo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Ciencia Do Solo\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.36783/18069657rbcs20210099\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Ciencia Do Solo","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.36783/18069657rbcs20210099","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Ultramafic soils and nickel phytomining opportunities: A review
: Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology.
期刊介绍:
The Revista Brasileira de Ciência do Solo is a scientific journal published by the Brazilian Society for Soil Science (SBCS), founded in 1947, and is responsible for the propagation of original and inedited technical-scientific work of interest for Soil Science.
Contributions must not have been previously published or submit to other periodicals, with the only exception of articles presented in summarized form at professional meetings. Literature reviews are accepted when solicited by the Editorial Board.