基于CatBoost分类器的多数据集输电线路故障分类

Signals Pub Date : 2022-07-05 DOI:10.3390/signals3030027
V. Ogar, Sajjad Hussain, K. Gamage
{"title":"基于CatBoost分类器的多数据集输电线路故障分类","authors":"V. Ogar, Sajjad Hussain, K. Gamage","doi":"10.3390/signals3030027","DOIUrl":null,"url":null,"abstract":"Transmission line fault classification forms the basis of fault protection management in power systems. Because faults have adverse effects on transmission lines, adequate measures must be implemented to avoid power outages. This paper focuses on using the categorical boosting (CatBoost) algorithm classifier to analyse and train multiple voltage and current data from a 330 kV and 500 km-long simulated faulty transmission line model designed using Matlab/Simulink. From it, 93,340 fault data sizes were extracted. The CatBoost classifier was employed to classify the faults after different machine learning algorithms were used to train the same data with different parameters. The trainer achieved the best accuracy of 99.54%, with an error of 0.46% for 748 iterations out of 1000. The algorithm was selected for its high performance in classifying faults based on accuracy, precision and speed. In addition, it is easy to use and handles multiple data-sets. In contrast, a support vector machine and an artificial neural network each has a longer training time than the proposed method’s 58.5 s. Proper fault classification techniques assist in the effective fault management and planning of power system control thereby preventing energy waste and providing high performance.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transmission Line Fault Classification of Multi-Dataset Using CatBoost Classifier\",\"authors\":\"V. Ogar, Sajjad Hussain, K. Gamage\",\"doi\":\"10.3390/signals3030027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transmission line fault classification forms the basis of fault protection management in power systems. Because faults have adverse effects on transmission lines, adequate measures must be implemented to avoid power outages. This paper focuses on using the categorical boosting (CatBoost) algorithm classifier to analyse and train multiple voltage and current data from a 330 kV and 500 km-long simulated faulty transmission line model designed using Matlab/Simulink. From it, 93,340 fault data sizes were extracted. The CatBoost classifier was employed to classify the faults after different machine learning algorithms were used to train the same data with different parameters. The trainer achieved the best accuracy of 99.54%, with an error of 0.46% for 748 iterations out of 1000. The algorithm was selected for its high performance in classifying faults based on accuracy, precision and speed. In addition, it is easy to use and handles multiple data-sets. In contrast, a support vector machine and an artificial neural network each has a longer training time than the proposed method’s 58.5 s. Proper fault classification techniques assist in the effective fault management and planning of power system control thereby preventing energy waste and providing high performance.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals3030027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

输电线路故障分类是电力系统故障保护管理的基础。由于故障对输电线路有不利的影响,必须采取适当的措施来避免停电。本文主要利用CatBoost算法分类器对用Matlab/Simulink设计的330 kV、500 km长的模拟故障传输线模型的多个电压电流数据进行分析和训练。从中提取了93340个故障数据大小。采用不同的机器学习算法对同一数据进行不同参数的训练后,采用CatBoost分类器对故障进行分类。训练器达到了99.54%的最佳准确率,1000次迭代748次的误差为0.46%。该算法在故障分类方面具有较高的准确性、精密度和速度。此外,它易于使用和处理多个数据集。相比之下,支持向量机和人工神经网络的训练时间都比该方法的58.5 s要长。适当的故障分类技术有助于有效的故障管理和电力系统控制规划,从而防止能源浪费和提供高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transmission Line Fault Classification of Multi-Dataset Using CatBoost Classifier
Transmission line fault classification forms the basis of fault protection management in power systems. Because faults have adverse effects on transmission lines, adequate measures must be implemented to avoid power outages. This paper focuses on using the categorical boosting (CatBoost) algorithm classifier to analyse and train multiple voltage and current data from a 330 kV and 500 km-long simulated faulty transmission line model designed using Matlab/Simulink. From it, 93,340 fault data sizes were extracted. The CatBoost classifier was employed to classify the faults after different machine learning algorithms were used to train the same data with different parameters. The trainer achieved the best accuracy of 99.54%, with an error of 0.46% for 748 iterations out of 1000. The algorithm was selected for its high performance in classifying faults based on accuracy, precision and speed. In addition, it is easy to use and handles multiple data-sets. In contrast, a support vector machine and an artificial neural network each has a longer training time than the proposed method’s 58.5 s. Proper fault classification techniques assist in the effective fault management and planning of power system control thereby preventing energy waste and providing high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1