{"title":"利用药物信息学方法发现的植物化学先导化合物可能是SARS CoV-2主要蛋白酶抑制剂","authors":"V. Malviya, M. Tawar, Prashant J. Burange, Ritu A. Bairagi, Vaibhav Bhadange, Chaitanya Vikhar","doi":"10.29228/jrp.300","DOIUrl":null,"url":null,"abstract":"The corona virus (CoV) family's emerging SARS-CoV-2 strain potentially causes one of the most catastrophic COVID-19 pandemics in mankind. Other than vaccines for preventing SARS-CoV-2 infection, no selective drugs are available to treat the disease caused by the SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 plays a critical role in viral replication, and inhibiting the protease can hamper the virus's replication and infection process. Thus, we aimed to identify SARS-CoV-2 main protease (Mpro) inhibitors from Euphorbia neriifolia. Primarily, a total of 31 compounds were selected through wide literature study and the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) server. Current advances in computer-aided drug discovery includes molecular docking, pharmacokinetics, drug properties, toxicity analysis and molecular dynamic (MD) simulation were applied in characterization and identification of possible lead compounds in E. neriifolia. The compound's screening through molecular docking resulted in four phytochemicals, viz., CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213 exhibiting higher binding affinity of-8.461,-7.355,-6.404, and-6.382 kcal/mol, respectively, to the active site of the target Mpro. Subsequently, these four phytochemicals exhibited good pharmacokinetics and drug properties without toxicity. A MD simulation confirmed the binding stability of four phytochemicals to the Mpro. Our study identified four phytochemicals (CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213) can be developed as treatment option for SARS-CoV-2 disease related complications. Further in vitro and in vivo screening of the anti-SARS-CoV-2 effectiveness of E. neriifolia, as well as future clinical studies, are encouraged. © 2023 Marmara University Press.","PeriodicalId":17096,"journal":{"name":"Journal of Research in Pharmacy","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euphorbia neriifolia L. phytochemical lead compounds discovered using pharmacoinformatic methods as possible SARS CoV-2 main protease inhibitors\",\"authors\":\"V. Malviya, M. Tawar, Prashant J. Burange, Ritu A. Bairagi, Vaibhav Bhadange, Chaitanya Vikhar\",\"doi\":\"10.29228/jrp.300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corona virus (CoV) family's emerging SARS-CoV-2 strain potentially causes one of the most catastrophic COVID-19 pandemics in mankind. Other than vaccines for preventing SARS-CoV-2 infection, no selective drugs are available to treat the disease caused by the SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 plays a critical role in viral replication, and inhibiting the protease can hamper the virus's replication and infection process. Thus, we aimed to identify SARS-CoV-2 main protease (Mpro) inhibitors from Euphorbia neriifolia. Primarily, a total of 31 compounds were selected through wide literature study and the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) server. Current advances in computer-aided drug discovery includes molecular docking, pharmacokinetics, drug properties, toxicity analysis and molecular dynamic (MD) simulation were applied in characterization and identification of possible lead compounds in E. neriifolia. The compound's screening through molecular docking resulted in four phytochemicals, viz., CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213 exhibiting higher binding affinity of-8.461,-7.355,-6.404, and-6.382 kcal/mol, respectively, to the active site of the target Mpro. Subsequently, these four phytochemicals exhibited good pharmacokinetics and drug properties without toxicity. A MD simulation confirmed the binding stability of four phytochemicals to the Mpro. Our study identified four phytochemicals (CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213) can be developed as treatment option for SARS-CoV-2 disease related complications. Further in vitro and in vivo screening of the anti-SARS-CoV-2 effectiveness of E. neriifolia, as well as future clinical studies, are encouraged. © 2023 Marmara University Press.\",\"PeriodicalId\":17096,\"journal\":{\"name\":\"Journal of Research in Pharmacy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research in Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29228/jrp.300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29228/jrp.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Euphorbia neriifolia L. phytochemical lead compounds discovered using pharmacoinformatic methods as possible SARS CoV-2 main protease inhibitors
The corona virus (CoV) family's emerging SARS-CoV-2 strain potentially causes one of the most catastrophic COVID-19 pandemics in mankind. Other than vaccines for preventing SARS-CoV-2 infection, no selective drugs are available to treat the disease caused by the SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 plays a critical role in viral replication, and inhibiting the protease can hamper the virus's replication and infection process. Thus, we aimed to identify SARS-CoV-2 main protease (Mpro) inhibitors from Euphorbia neriifolia. Primarily, a total of 31 compounds were selected through wide literature study and the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) server. Current advances in computer-aided drug discovery includes molecular docking, pharmacokinetics, drug properties, toxicity analysis and molecular dynamic (MD) simulation were applied in characterization and identification of possible lead compounds in E. neriifolia. The compound's screening through molecular docking resulted in four phytochemicals, viz., CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213 exhibiting higher binding affinity of-8.461,-7.355,-6.404, and-6.382 kcal/mol, respectively, to the active site of the target Mpro. Subsequently, these four phytochemicals exhibited good pharmacokinetics and drug properties without toxicity. A MD simulation confirmed the binding stability of four phytochemicals to the Mpro. Our study identified four phytochemicals (CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213) can be developed as treatment option for SARS-CoV-2 disease related complications. Further in vitro and in vivo screening of the anti-SARS-CoV-2 effectiveness of E. neriifolia, as well as future clinical studies, are encouraged. © 2023 Marmara University Press.