QbD指导下盐酸利多卡因立方体体的研制与评价

IF 0.6 Q4 PHARMACOLOGY & PHARMACY Journal of Research in Pharmacy Pub Date : 2023-01-01 DOI:10.29228/jrp.485
Rajani Thoutreddy, Koteswara Rao Gsn, N. Malothu, C. Guntupalli, Pavani Sriram, R. R. Alavala
{"title":"QbD指导下盐酸利多卡因立方体体的研制与评价","authors":"Rajani Thoutreddy, Koteswara Rao Gsn, N. Malothu, C. Guntupalli, Pavani Sriram, R. R. Alavala","doi":"10.29228/jrp.485","DOIUrl":null,"url":null,"abstract":": Cubosomes, which are modified cubic phase systems, are looking very promising as a method of delivering both hydrophilic and lipophilic drugs. Transdermal delivery of cubosomes is currently gaining more importance over conventional topical delivery of drugs. The proposed study aimed to produce Lidocaine hydrochloride loaded cubosomes. This study was designed to prepare various formulations of Lidocaine nano cubsomal dispersions at different concentrations of lipid and stabilizer using optimization technique. For the purpose of prolonging the duration of the local anaesthetic action, Lidocaine-loaded cubosomes were developed by bottom up method utilizing Glyceryl mono oleate and Poloxamer 407 in various ratios using the \"Quality by Design\" approach, 3 2 factorial design employing statistical software. Within the confidence intervals, the 3 2 statistical design was effective at forecasting the optimized formulation's composition. Surface morphology, particle size, drug content, poly dispersibility index, zeta potential, entrapment efficiency, and in vitro drug release studies were conducted on the prepared formulations. Several mathematical models were used to conduct and assess an in vitro drug release investigation. The maximal entrapment efficiency for the LH8 formulation, which was validated to have optimum cubosomes dispersion, was reported to be 78 % with vesicle size as 150 nm, Zeta potential 21.5 mV and Poly Dispersibility Index as 0.08 along with an in vitro drug release 80.03 % by the end of 24 hours. A stable dispersion with appreciable results of evaluation parameters of cubosomal dispersion was conferred with formulation LH8. Hence from amongst the nine formulations developed, it is concluded that LH8 is selected as the optimized dispersion to be incorporated into a gel formulation.","PeriodicalId":17096,"journal":{"name":"Journal of Research in Pharmacy","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Evaluation of Lidocaine Hydrochloride Cubosomes directed by QbD\",\"authors\":\"Rajani Thoutreddy, Koteswara Rao Gsn, N. Malothu, C. Guntupalli, Pavani Sriram, R. R. Alavala\",\"doi\":\"10.29228/jrp.485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cubosomes, which are modified cubic phase systems, are looking very promising as a method of delivering both hydrophilic and lipophilic drugs. Transdermal delivery of cubosomes is currently gaining more importance over conventional topical delivery of drugs. The proposed study aimed to produce Lidocaine hydrochloride loaded cubosomes. This study was designed to prepare various formulations of Lidocaine nano cubsomal dispersions at different concentrations of lipid and stabilizer using optimization technique. For the purpose of prolonging the duration of the local anaesthetic action, Lidocaine-loaded cubosomes were developed by bottom up method utilizing Glyceryl mono oleate and Poloxamer 407 in various ratios using the \\\"Quality by Design\\\" approach, 3 2 factorial design employing statistical software. Within the confidence intervals, the 3 2 statistical design was effective at forecasting the optimized formulation's composition. Surface morphology, particle size, drug content, poly dispersibility index, zeta potential, entrapment efficiency, and in vitro drug release studies were conducted on the prepared formulations. Several mathematical models were used to conduct and assess an in vitro drug release investigation. The maximal entrapment efficiency for the LH8 formulation, which was validated to have optimum cubosomes dispersion, was reported to be 78 % with vesicle size as 150 nm, Zeta potential 21.5 mV and Poly Dispersibility Index as 0.08 along with an in vitro drug release 80.03 % by the end of 24 hours. A stable dispersion with appreciable results of evaluation parameters of cubosomal dispersion was conferred with formulation LH8. Hence from amongst the nine formulations developed, it is concluded that LH8 is selected as the optimized dispersion to be incorporated into a gel formulation.\",\"PeriodicalId\":17096,\"journal\":{\"name\":\"Journal of Research in Pharmacy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research in Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29228/jrp.485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29228/jrp.485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

立方体体是一种改性的立方相体系,作为一种输送亲水性和亲脂性药物的方法,前景非常光明。目前,经皮给药立方体比传统的局部给药更为重要。本研究旨在制备装载盐酸利多卡因的小体。本研究旨在利用优化技术制备不同脂质和稳定剂浓度的利多卡因纳米立方体分散体。为了延长局部麻醉作用的持续时间,采用自下而上的方法,利用单油酸甘油酯和波洛沙姆407按不同比例配制利多卡因负载的立方体体,采用“质量设计”方法,采用统计软件进行2因子设计。在置信区间内,32统计设计能有效预测优化后的配方成分。对制备的制剂进行表面形貌、粒径、药物含量、多分散指数、zeta电位、包封效率及体外释药研究。采用多种数学模型进行体外释药研究。LH8的最大包封效率为78%,囊泡大小为150 nm, Zeta电位为21.5 mV,聚分散指数为0.08,24小时体外释药率为80.03%,具有最佳的立方体分散性。配方LH8具有稳定的分散度,并具有明显的体体分散度评价参数。因此,从开发的九种配方中,得出的结论是,LH8被选择为最佳分散体,以纳入凝胶配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Evaluation of Lidocaine Hydrochloride Cubosomes directed by QbD
: Cubosomes, which are modified cubic phase systems, are looking very promising as a method of delivering both hydrophilic and lipophilic drugs. Transdermal delivery of cubosomes is currently gaining more importance over conventional topical delivery of drugs. The proposed study aimed to produce Lidocaine hydrochloride loaded cubosomes. This study was designed to prepare various formulations of Lidocaine nano cubsomal dispersions at different concentrations of lipid and stabilizer using optimization technique. For the purpose of prolonging the duration of the local anaesthetic action, Lidocaine-loaded cubosomes were developed by bottom up method utilizing Glyceryl mono oleate and Poloxamer 407 in various ratios using the "Quality by Design" approach, 3 2 factorial design employing statistical software. Within the confidence intervals, the 3 2 statistical design was effective at forecasting the optimized formulation's composition. Surface morphology, particle size, drug content, poly dispersibility index, zeta potential, entrapment efficiency, and in vitro drug release studies were conducted on the prepared formulations. Several mathematical models were used to conduct and assess an in vitro drug release investigation. The maximal entrapment efficiency for the LH8 formulation, which was validated to have optimum cubosomes dispersion, was reported to be 78 % with vesicle size as 150 nm, Zeta potential 21.5 mV and Poly Dispersibility Index as 0.08 along with an in vitro drug release 80.03 % by the end of 24 hours. A stable dispersion with appreciable results of evaluation parameters of cubosomal dispersion was conferred with formulation LH8. Hence from amongst the nine formulations developed, it is concluded that LH8 is selected as the optimized dispersion to be incorporated into a gel formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Research in Pharmacy
Journal of Research in Pharmacy PHARMACOLOGY & PHARMACY-
CiteScore
1.00
自引率
12.50%
发文量
80
期刊最新文献
Artificial Intelligence approach to verify irrationality of FDCs listed by CDSCO Potential of Impatiens walleriana Hook.f. as medicinal herb and otherwise - An update Missing heritability paradox in schizophrenia: hypothesis and plausible clues An Egg Shell: A Nutritional Profile and Health Benefits Silica nanoparticle synthesis by experimental design for drug and gene delivery applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1