J. Muschelli, E. Sweeney, M. Lindquist, C. Crainiceanu
{"title":"fslr:连接FSL软件与R","authors":"J. Muschelli, E. Sweeney, M. Lindquist, C. Crainiceanu","doi":"10.32614/RJ-2015-013","DOIUrl":null,"url":null,"abstract":"We present the package fslr, a set of R functions that interface with FSL (FMRIB Software Library), a commonly-used open-source software package for processing and analyzing neuroimaging data. The fslr package performs operations on 'nifti' image objects in R using command-line functions from FSL, and returns R objects back to the user. fslr allows users to develop image processing and analysis pipelines based on FSL functionality while interfacing with the functionality provided by R. We present an example of the analysis of structural magnetic resonance images, which demonstrates how R users can leverage the functionality of FSL without switching to shell commands.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"12 1","pages":"163-175"},"PeriodicalIF":2.3000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"fslr: Connecting the FSL Software with R\",\"authors\":\"J. Muschelli, E. Sweeney, M. Lindquist, C. Crainiceanu\",\"doi\":\"10.32614/RJ-2015-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the package fslr, a set of R functions that interface with FSL (FMRIB Software Library), a commonly-used open-source software package for processing and analyzing neuroimaging data. The fslr package performs operations on 'nifti' image objects in R using command-line functions from FSL, and returns R objects back to the user. fslr allows users to develop image processing and analysis pipelines based on FSL functionality while interfacing with the functionality provided by R. We present an example of the analysis of structural magnetic resonance images, which demonstrates how R users can leverage the functionality of FSL without switching to shell commands.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"12 1\",\"pages\":\"163-175\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/RJ-2015-013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/RJ-2015-013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We present the package fslr, a set of R functions that interface with FSL (FMRIB Software Library), a commonly-used open-source software package for processing and analyzing neuroimaging data. The fslr package performs operations on 'nifti' image objects in R using command-line functions from FSL, and returns R objects back to the user. fslr allows users to develop image processing and analysis pipelines based on FSL functionality while interfacing with the functionality provided by R. We present an example of the analysis of structural magnetic resonance images, which demonstrates how R users can leverage the functionality of FSL without switching to shell commands.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.