Spearman和Kendall系数的样本量图表

Justin May, S. Looney
{"title":"Spearman和Kendall系数的样本量图表","authors":"Justin May, S. Looney","doi":"10.37421/2155-6180.2020.11.440","DOIUrl":null,"url":null,"abstract":"Bivariate correlation analysis is one of the most commonly used statistical methods. Unfortunately, it is generally the case that little or no attention is given to sample size determination when planning a study in which correlation analysis will be used. For example, our review of clinical research journals indicated that none of the 111 articles published in 2014 that presented correlation results provided a justification for the sample size used in the correlation analysis. There are a number of easily accessible tools that can be used to determine the required sample size for inference based on a Pearson correlation coefficient; however, we were unable to locate any widely available tools that can be used for sample size calculations for a Spearman correlation coefficient or a Kendall coefficient of concordance. In this article, we provide formulas and charts that can be used to determine the required sample size for inference based on either of these coefficients. Additional sample size charts are provided in the Supplementary Materials.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"11 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Sample Size Charts for Spearman and Kendall Coefficients\",\"authors\":\"Justin May, S. Looney\",\"doi\":\"10.37421/2155-6180.2020.11.440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bivariate correlation analysis is one of the most commonly used statistical methods. Unfortunately, it is generally the case that little or no attention is given to sample size determination when planning a study in which correlation analysis will be used. For example, our review of clinical research journals indicated that none of the 111 articles published in 2014 that presented correlation results provided a justification for the sample size used in the correlation analysis. There are a number of easily accessible tools that can be used to determine the required sample size for inference based on a Pearson correlation coefficient; however, we were unable to locate any widely available tools that can be used for sample size calculations for a Spearman correlation coefficient or a Kendall coefficient of concordance. In this article, we provide formulas and charts that can be used to determine the required sample size for inference based on either of these coefficients. Additional sample size charts are provided in the Supplementary Materials.\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\"11 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37421/2155-6180.2020.11.440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37421/2155-6180.2020.11.440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

双变量相关分析是最常用的统计方法之一。不幸的是,在计划使用相关分析的研究时,通常很少或根本没有注意到样本量的确定。例如,我们对临床研究期刊的回顾表明,在2014年发表的111篇文章中,没有一篇提供了相关结果,为相关分析中使用的样本量提供了理由。有许多易于使用的工具可用于确定基于Pearson相关系数的推理所需的样本量;然而,我们无法找到任何广泛可用的工具,可用于计算Spearman相关系数或Kendall一致性系数的样本量。在本文中,我们提供了公式和图表,可用于确定基于这些系数的推理所需的样本大小。补充资料中提供了额外的样本大小图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample Size Charts for Spearman and Kendall Coefficients
Bivariate correlation analysis is one of the most commonly used statistical methods. Unfortunately, it is generally the case that little or no attention is given to sample size determination when planning a study in which correlation analysis will be used. For example, our review of clinical research journals indicated that none of the 111 articles published in 2014 that presented correlation results provided a justification for the sample size used in the correlation analysis. There are a number of easily accessible tools that can be used to determine the required sample size for inference based on a Pearson correlation coefficient; however, we were unable to locate any widely available tools that can be used for sample size calculations for a Spearman correlation coefficient or a Kendall coefficient of concordance. In this article, we provide formulas and charts that can be used to determine the required sample size for inference based on either of these coefficients. Additional sample size charts are provided in the Supplementary Materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSPECTIVELY ESTIMATING THE AGE OF INITIATION OF E-CIGARETTES AMONG U.S. YOUTH: FINDINGS FROM THE POPULATION ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY, 2013-2017. The Kumaraswamy-Rani Distribution and Its Applications Analytical Visual Methods to Describe Practice Patterns in a Newly Diagnosed Multiple Myeloma Non-Interventional Disease Registry Short Prognostic APP for Multiple Myeloma Sample Size Charts for Spearman and Kendall Coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1