基于FABEMD 和Goldstein 滤波器的SAR 舰船尾迹图像增强方法

Q2 Physics and Astronomy 雷达学报 Pub Date : 2013-05-03 DOI:10.3724/SP.J.1300.2012.20059
张问一, 胡东辉, 丁赤飚
{"title":"基于FABEMD 和Goldstein 滤波器的SAR 舰船尾迹图像增强方法","authors":"张问一, 胡东辉, 丁赤飚","doi":"10.3724/SP.J.1300.2012.20059","DOIUrl":null,"url":null,"abstract":"增强SAR 舰船尾迹图像中模糊的开尔文尾迹并保持湍流尾迹特征对舰船及运动参数的反演具有重要作用。该文利用快速自适应2 维经验模式分解方法(Fast and Adaptive Bidimensional Empirical Mode Decomposition,FABEMD)实现图像中开尔文尾迹,湍流尾迹和其他中/大尺度海洋特征的分解,提高开尔文尾迹相对其他特征的图像和频谱对比度。同时引入并改进干涉图Goldstein 滤波器实现对开尔文尾迹的进一步增强,并利用不变矩对增强后的SAR 舰船尾迹图像进行评价。通过原理分析、增强实验和主/客观评价,表明该方法具有显著的开尔文尾迹增强效果,并保持了湍流尾迹特征,实现效率高且适用性较强。","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":"426-435"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于FABEMD 和Goldstein 滤波器的SAR 舰船尾迹图像增强方法\",\"authors\":\"张问一, 胡东辉, 丁赤飚\",\"doi\":\"10.3724/SP.J.1300.2012.20059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"增强SAR 舰船尾迹图像中模糊的开尔文尾迹并保持湍流尾迹特征对舰船及运动参数的反演具有重要作用。该文利用快速自适应2 维经验模式分解方法(Fast and Adaptive Bidimensional Empirical Mode Decomposition,FABEMD)实现图像中开尔文尾迹,湍流尾迹和其他中/大尺度海洋特征的分解,提高开尔文尾迹相对其他特征的图像和频谱对比度。同时引入并改进干涉图Goldstein 滤波器实现对开尔文尾迹的进一步增强,并利用不变矩对增强后的SAR 舰船尾迹图像进行评价。通过原理分析、增强实验和主/客观评价,表明该方法具有显著的开尔文尾迹增强效果,并保持了湍流尾迹特征,实现效率高且适用性较强。\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"1 1\",\"pages\":\"426-435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2012.20059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2012.20059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

增强SAR 舰船尾迹图像中模糊的开尔文尾迹并保持湍流尾迹特征对舰船及运动参数的反演具有重要作用。该文利用快速自适应2 维经验模式分解方法(Fast and Adaptive Bidimensional Empirical Mode Decomposition,FABEMD)实现图像中开尔文尾迹,湍流尾迹和其他中/大尺度海洋特征的分解,提高开尔文尾迹相对其他特征的图像和频谱对比度。同时引入并改进干涉图Goldstein 滤波器实现对开尔文尾迹的进一步增强,并利用不变矩对增强后的SAR 舰船尾迹图像进行评价。通过原理分析、增强实验和主/客观评价,表明该方法具有显著的开尔文尾迹增强效果,并保持了湍流尾迹特征,实现效率高且适用性较强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FABEMD 和Goldstein 滤波器的SAR 舰船尾迹图像增强方法
增强SAR 舰船尾迹图像中模糊的开尔文尾迹并保持湍流尾迹特征对舰船及运动参数的反演具有重要作用。该文利用快速自适应2 维经验模式分解方法(Fast and Adaptive Bidimensional Empirical Mode Decomposition,FABEMD)实现图像中开尔文尾迹,湍流尾迹和其他中/大尺度海洋特征的分解,提高开尔文尾迹相对其他特征的图像和频谱对比度。同时引入并改进干涉图Goldstein 滤波器实现对开尔文尾迹的进一步增强,并利用不变矩对增强后的SAR 舰船尾迹图像进行评价。通过原理分析、增强实验和主/客观评价,表明该方法具有显著的开尔文尾迹增强效果,并保持了湍流尾迹特征,实现效率高且适用性较强。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal. Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology. Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.
期刊最新文献
Integrated Chip Technologies for Microwave Photonics Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1