基于反高斯分布的复合高斯海杂波建模:基于反高斯分布的复合高斯海杂波建模

Q2 Physics and Astronomy 雷达学报 Pub Date : 2014-01-15 DOI:10.3724/SP.J.1300.2013.13083
Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun
{"title":"基于反高斯分布的复合高斯海杂波建模:基于反高斯分布的复合高斯海杂波建模","authors":"Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun","doi":"10.3724/SP.J.1300.2013.13083","DOIUrl":null,"url":null,"abstract":"The Compound-Gaussian (CG) distribution is widely used for modeling non-Gaussian clutter, as its texture component describes the non-Gaussian properties of the clutter. In this paper, a CG model with an inverse-Gaussian texture distribution, called the Inverse-Gaussian Compound-Gaussian (IG-CG) distribution, is proposed, and its distributional properties are derived. IPIX radar lake-clutter measurements have been analyzed, and the results show that the two-parameter IG-CG distribution model fits real radar data better than a single parameter IG-CG distribution model or a K distribution model.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"2 1","pages":"461-465"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling of Compound-Gaussian Sea Clutter Based on an Inverse Gaussian Distribution: Modeling of Compound-Gaussian Sea Clutter Based on an Inverse Gaussian Distribution\",\"authors\":\"Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun\",\"doi\":\"10.3724/SP.J.1300.2013.13083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Compound-Gaussian (CG) distribution is widely used for modeling non-Gaussian clutter, as its texture component describes the non-Gaussian properties of the clutter. In this paper, a CG model with an inverse-Gaussian texture distribution, called the Inverse-Gaussian Compound-Gaussian (IG-CG) distribution, is proposed, and its distributional properties are derived. IPIX radar lake-clutter measurements have been analyzed, and the results show that the two-parameter IG-CG distribution model fits real radar data better than a single parameter IG-CG distribution model or a K distribution model.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"2 1\",\"pages\":\"461-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.13083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.13083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 9

摘要

复合高斯分布被广泛用于非高斯杂波的建模,因为它的纹理分量描述了杂波的非高斯特性。本文提出了一种具有反高斯纹理分布的CG模型,即反高斯复合高斯(IG-CG)分布,并推导了其分布特性。对IPIX雷达湖杂波测量结果进行了分析,结果表明,双参数IG-CG分布模型比单参数IG-CG分布模型或K分布模型更符合实际雷达数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Compound-Gaussian Sea Clutter Based on an Inverse Gaussian Distribution: Modeling of Compound-Gaussian Sea Clutter Based on an Inverse Gaussian Distribution
The Compound-Gaussian (CG) distribution is widely used for modeling non-Gaussian clutter, as its texture component describes the non-Gaussian properties of the clutter. In this paper, a CG model with an inverse-Gaussian texture distribution, called the Inverse-Gaussian Compound-Gaussian (IG-CG) distribution, is proposed, and its distributional properties are derived. IPIX radar lake-clutter measurements have been analyzed, and the results show that the two-parameter IG-CG distribution model fits real radar data better than a single parameter IG-CG distribution model or a K distribution model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Information not localized
期刊最新文献
Integrated Chip Technologies for Microwave Photonics Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1