{"title":"基于小波包算法的压缩感知SAR成像方法","authors":"Shi Yan, Di-rong Chen","doi":"10.3724/SP.J.1300.2013.20068","DOIUrl":null,"url":null,"abstract":"Compressive sensing SAR imaging can significantly reduce the sampling rate and the amount of data required, but it is essential only in the case where the reflection coefficients of a SAR scene are sparse. This paper proposes a compressive sensing SAR imaging method based on wavelet packet sparse representation. The wavelet packet algorithm is used to choose the most sparse representation of the SAR scene by training the same type of SAR images. By solving for the minimum 1 l norm optimization, the SAR scene reflection coefficients can be reconstructed. Unambiguous SAR images can be produced with the proposed method, even with fewer samples. SAR data simulation experiments demonstrate the efficiency of the proposed method.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compressive Sensing SAR Imaging Approach Based on Wavelet Package Algorithm\",\"authors\":\"Shi Yan, Di-rong Chen\",\"doi\":\"10.3724/SP.J.1300.2013.20068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing SAR imaging can significantly reduce the sampling rate and the amount of data required, but it is essential only in the case where the reflection coefficients of a SAR scene are sparse. This paper proposes a compressive sensing SAR imaging method based on wavelet packet sparse representation. The wavelet packet algorithm is used to choose the most sparse representation of the SAR scene by training the same type of SAR images. By solving for the minimum 1 l norm optimization, the SAR scene reflection coefficients can be reconstructed. Unambiguous SAR images can be produced with the proposed method, even with fewer samples. SAR data simulation experiments demonstrate the efficiency of the proposed method.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.20068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A Compressive Sensing SAR Imaging Approach Based on Wavelet Package Algorithm
Compressive sensing SAR imaging can significantly reduce the sampling rate and the amount of data required, but it is essential only in the case where the reflection coefficients of a SAR scene are sparse. This paper proposes a compressive sensing SAR imaging method based on wavelet packet sparse representation. The wavelet packet algorithm is used to choose the most sparse representation of the SAR scene by training the same type of SAR images. By solving for the minimum 1 l norm optimization, the SAR scene reflection coefficients can be reconstructed. Unambiguous SAR images can be produced with the proposed method, even with fewer samples. SAR data simulation experiments demonstrate the efficiency of the proposed method.
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.