基于多层自编码器的SAR目标和阴影共享表示

Q2 Physics and Astronomy 雷达学报 Pub Date : 2013-04-01 DOI:10.3724/SP.J.1300.2013.20085
Zhi-jun Sun, Lei Xue, Yang-ming Xu, Zhijun Sun
{"title":"基于多层自编码器的SAR目标和阴影共享表示","authors":"Zhi-jun Sun, Lei Xue, Yang-ming Xu, Zhijun Sun","doi":"10.3724/SP.J.1300.2013.20085","DOIUrl":null,"url":null,"abstract":"Automatic Target Recognition (ATR) of Synthetic Aperture Radar (SAR) images is investigated. A SAR feature extraction algorithm based on a multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network and Restricted Boltzmann Machine (RBM) modeling probability distribution of the environment. Through the formation of a more expressive multilayer neural network, the deep learning model learns the shared representation of the target and its shadow outline reflecting the target shape characteristics. Targets are classified automatically through two recognition models. The experiment results based on the MSTAR verify the effectiveness of the proposed algorithm.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shared Representation of SAR Target and Shadow Based on Multilayer Auto-encoder\",\"authors\":\"Zhi-jun Sun, Lei Xue, Yang-ming Xu, Zhijun Sun\",\"doi\":\"10.3724/SP.J.1300.2013.20085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Target Recognition (ATR) of Synthetic Aperture Radar (SAR) images is investigated. A SAR feature extraction algorithm based on a multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network and Restricted Boltzmann Machine (RBM) modeling probability distribution of the environment. Through the formation of a more expressive multilayer neural network, the deep learning model learns the shared representation of the target and its shadow outline reflecting the target shape characteristics. Targets are classified automatically through two recognition models. The experiment results based on the MSTAR verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.20085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

研究了合成孔径雷达(SAR)图像的自动目标识别(ATR)问题。提出了一种基于多层自编码器的SAR特征提取算法。该方法利用概率神经网络和受限玻尔兹曼机(RBM)对环境的概率分布进行建模。深度学习模型通过形成更具表现力的多层神经网络,学习目标的共享表示及其反映目标形状特征的阴影轮廓。通过两种识别模型对目标进行自动分类。基于MSTAR的实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shared Representation of SAR Target and Shadow Based on Multilayer Auto-encoder
Automatic Target Recognition (ATR) of Synthetic Aperture Radar (SAR) images is investigated. A SAR feature extraction algorithm based on a multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network and Restricted Boltzmann Machine (RBM) modeling probability distribution of the environment. Through the formation of a more expressive multilayer neural network, the deep learning model learns the shared representation of the target and its shadow outline reflecting the target shape characteristics. Targets are classified automatically through two recognition models. The experiment results based on the MSTAR verify the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Information not localized
期刊最新文献
Integrated Chip Technologies for Microwave Photonics Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1