{"title":"影响MTPT机载SAR图像剩余运动估计的两个因素:影响MTPT机载SAR图像剩余运动估计的两个因素","authors":"Xue-lian Zhong, Ren-yuan Chen, Ran Yang, Tao Wu","doi":"10.3724/SP.J.1300.2013.20095","DOIUrl":null,"url":null,"abstract":"Due to the poor accuracy of navigation systems, deviations of the order of centimeters between the real and measured trajectories, called residual motion errors, frequently occur in SAR images. For airborne SAR systems with very high resolution and airborne repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. Multi-squint Technique with Point Targets (MTPT) is able to estimate the residual motion errors for an individual SAR image, but errors in the platform velocity and the slant range will deteriorate the accuracy of the method. In this paper, we validate this by performing detailed analysis of the velocity and slant range to residual motion error estimation using both simulated and real SAR data. It is also shown that MTPT is able to estimate the errors in the velocity and slant range, and it is sensitive to the phase error. Therefore, it is advised that the errors in the velocity and slant range should be removed using other precise methods before","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"2 1","pages":"180-186"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT: Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT\",\"authors\":\"Xue-lian Zhong, Ren-yuan Chen, Ran Yang, Tao Wu\",\"doi\":\"10.3724/SP.J.1300.2013.20095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the poor accuracy of navigation systems, deviations of the order of centimeters between the real and measured trajectories, called residual motion errors, frequently occur in SAR images. For airborne SAR systems with very high resolution and airborne repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. Multi-squint Technique with Point Targets (MTPT) is able to estimate the residual motion errors for an individual SAR image, but errors in the platform velocity and the slant range will deteriorate the accuracy of the method. In this paper, we validate this by performing detailed analysis of the velocity and slant range to residual motion error estimation using both simulated and real SAR data. It is also shown that MTPT is able to estimate the errors in the velocity and slant range, and it is sensitive to the phase error. Therefore, it is advised that the errors in the velocity and slant range should be removed using other precise methods before\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"2 1\",\"pages\":\"180-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.20095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT: Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT
Due to the poor accuracy of navigation systems, deviations of the order of centimeters between the real and measured trajectories, called residual motion errors, frequently occur in SAR images. For airborne SAR systems with very high resolution and airborne repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. Multi-squint Technique with Point Targets (MTPT) is able to estimate the residual motion errors for an individual SAR image, but errors in the platform velocity and the slant range will deteriorate the accuracy of the method. In this paper, we validate this by performing detailed analysis of the velocity and slant range to residual motion error estimation using both simulated and real SAR data. It is also shown that MTPT is able to estimate the errors in the velocity and slant range, and it is sensitive to the phase error. Therefore, it is advised that the errors in the velocity and slant range should be removed using other precise methods before
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.