基于GPU的SAR数据处理高效算法

Q2 Physics and Astronomy 雷达学报 Pub Date : 2013-01-01 DOI:10.3724/sp.j.1300.2013.20098
M. Dadi, Huang Yuxin, D. Chibiao
{"title":"基于GPU的SAR数据处理高效算法","authors":"M. Dadi, Huang Yuxin, D. Chibiao","doi":"10.3724/sp.j.1300.2013.20098","DOIUrl":null,"url":null,"abstract":"Data processing is time-consuming in the field of Synthetic Aperture Radar (SAR). Graphics Processing Units (GPUs) have tremendous float-point computational ability and a very high memory bandwidth, and the developing Compute Unified Device Architecture (CUDA) technology has enabled the application of GPUs to general-purpose parallel computing. A new method for processing SAR data using GPUs is presented in this paper. Compared with the nominal GPU-based SAR processing method, the number of data transfers between the CPUs and a GPU is reduced from 4 to 1, and the CPUs are exploited to cooperate with the GPU synchronously. By using the proposed method, we can speed up the data processing by 2.3 times, which is verified by the testing with simulated SAR data.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Algorithm for Processing SAR Data Based on GPU\",\"authors\":\"M. Dadi, Huang Yuxin, D. Chibiao\",\"doi\":\"10.3724/sp.j.1300.2013.20098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data processing is time-consuming in the field of Synthetic Aperture Radar (SAR). Graphics Processing Units (GPUs) have tremendous float-point computational ability and a very high memory bandwidth, and the developing Compute Unified Device Architecture (CUDA) technology has enabled the application of GPUs to general-purpose parallel computing. A new method for processing SAR data using GPUs is presented in this paper. Compared with the nominal GPU-based SAR processing method, the number of data transfers between the CPUs and a GPU is reduced from 4 to 1, and the CPUs are exploited to cooperate with the GPU synchronously. By using the proposed method, we can speed up the data processing by 2.3 times, which is verified by the testing with simulated SAR data.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1300.2013.20098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1300.2013.20098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在合成孔径雷达(SAR)领域,数据处理非常耗时。图形处理单元(Graphics Processing Units, gpu)具有强大的浮点运算能力和极高的内存带宽,而计算统一设备架构(Compute Unified Device Architecture, CUDA)技术的发展使gpu能够应用于通用的并行计算。本文提出了一种利用图形处理器处理SAR数据的新方法。与传统的基于GPU的SAR处理方法相比,将cpu与GPU之间的数据传输次数从4次减少到1次,并充分利用cpu与GPU的同步协作。采用该方法可将数据处理速度提高2.3倍,并通过模拟SAR数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Algorithm for Processing SAR Data Based on GPU
Data processing is time-consuming in the field of Synthetic Aperture Radar (SAR). Graphics Processing Units (GPUs) have tremendous float-point computational ability and a very high memory bandwidth, and the developing Compute Unified Device Architecture (CUDA) technology has enabled the application of GPUs to general-purpose parallel computing. A new method for processing SAR data using GPUs is presented in this paper. Compared with the nominal GPU-based SAR processing method, the number of data transfers between the CPUs and a GPU is reduced from 4 to 1, and the CPUs are exploited to cooperate with the GPU synchronously. By using the proposed method, we can speed up the data processing by 2.3 times, which is verified by the testing with simulated SAR data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
雷达学报
雷达学报 Physics and Astronomy-Instrumentation
CiteScore
4.10
自引率
0.00%
发文量
882
期刊介绍: Information not localized
期刊最新文献
Integrated Chip Technologies for Microwave Photonics Distributed Multi-target Localization System Based on Optical Wavelength Division Multiplexing Network A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1