{"title":"超高分辨率机载SAR系统宽带激振器的设计与实现","authors":"Ying-xin Jia, Yanfeng Wang","doi":"10.3724/SP.J.1300.2013.20100","DOIUrl":null,"url":null,"abstract":": We designed and implemented a wideband Linear Frequency Modulated (LFM) pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth based on an ultra-high resolution airborne SAR system with a better than 0.1 m resolution. The selection of a signal generation scheme and some key technique points for wideband LFM waveform are presented in detail. Then, an acute test and analysis of the LFM signal are performed. The final airborne experiments demonstrate the validity of the LFM source, which is one of the subsystems in an ultra-high resolution airborne SAR system.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System\",\"authors\":\"Ying-xin Jia, Yanfeng Wang\",\"doi\":\"10.3724/SP.J.1300.2013.20100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We designed and implemented a wideband Linear Frequency Modulated (LFM) pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth based on an ultra-high resolution airborne SAR system with a better than 0.1 m resolution. The selection of a signal generation scheme and some key technique points for wideband LFM waveform are presented in detail. Then, an acute test and analysis of the LFM signal are performed. The final airborne experiments demonstrate the validity of the LFM source, which is one of the subsystems in an ultra-high resolution airborne SAR system.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.20100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.20100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System
: We designed and implemented a wideband Linear Frequency Modulated (LFM) pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth based on an ultra-high resolution airborne SAR system with a better than 0.1 m resolution. The selection of a signal generation scheme and some key technique points for wideband LFM waveform are presented in detail. Then, an acute test and analysis of the LFM signal are performed. The final airborne experiments demonstrate the validity of the LFM source, which is one of the subsystems in an ultra-high resolution airborne SAR system.