Fe-TiO2/沸石H-A光催化剂在紫外照射下降解废染料(亚甲基蓝

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2022-01-01 DOI:10.3934/matersci.2023003
R. Cahyanti, S. Sumari, F. Fajaroh, Muhammad Roy Asrori, Yana Fajar Prakasa
{"title":"Fe-TiO2/沸石H-A光催化剂在紫外照射下降解废染料(亚甲基蓝","authors":"R. Cahyanti, S. Sumari, F. Fajaroh, Muhammad Roy Asrori, Yana Fajar Prakasa","doi":"10.3934/matersci.2023003","DOIUrl":null,"url":null,"abstract":"Industrial wastewater contains non-biodegradable dyes that are highly toxic to humans and aquatic life. As solution from photocatalytic degradation, TiO2 is one of the effective photocatalysts for wastewater degradation, but it has low adsorption power. To overcome this deficiency, this study synthesized a new photocatalyst by Fe-TiO2/zeolite H-A. The photocatalyst was successfully synthesized by the impregnation method and was systematically characterized by XRD, XRF, SEM, FT-IR and UV-Vis DRS. XRD diffractogram at 2θ = 25.3° showed anatase phase of the photocatalyst. SEM results showed a rough and soft surface with a size of 491.49 nm. FT-IR analysis obtained the zeolite-A characteristic band, vibration of Ti-O-Ti groups and the vibration of the Fe-O group. The bandwidth of the band gap was 3.16 eV. The photocatalytic efficiency of methylene blue degradation reached 89.58% yield with optimum conditions: irradiation time of 50 min, pH 9 and concentration of methylene blue about 20 mg/L. Fe-TiO2/zeolite H-A as a new photocatalyst can be an alternative photocatalyst to purify methylene blue.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fe-TiO2/zeolite H-A photocatalyst for degradation of waste dye (methylene blue) under UV irradiation\",\"authors\":\"R. Cahyanti, S. Sumari, F. Fajaroh, Muhammad Roy Asrori, Yana Fajar Prakasa\",\"doi\":\"10.3934/matersci.2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial wastewater contains non-biodegradable dyes that are highly toxic to humans and aquatic life. As solution from photocatalytic degradation, TiO2 is one of the effective photocatalysts for wastewater degradation, but it has low adsorption power. To overcome this deficiency, this study synthesized a new photocatalyst by Fe-TiO2/zeolite H-A. The photocatalyst was successfully synthesized by the impregnation method and was systematically characterized by XRD, XRF, SEM, FT-IR and UV-Vis DRS. XRD diffractogram at 2θ = 25.3° showed anatase phase of the photocatalyst. SEM results showed a rough and soft surface with a size of 491.49 nm. FT-IR analysis obtained the zeolite-A characteristic band, vibration of Ti-O-Ti groups and the vibration of the Fe-O group. The bandwidth of the band gap was 3.16 eV. The photocatalytic efficiency of methylene blue degradation reached 89.58% yield with optimum conditions: irradiation time of 50 min, pH 9 and concentration of methylene blue about 20 mg/L. Fe-TiO2/zeolite H-A as a new photocatalyst can be an alternative photocatalyst to purify methylene blue.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

工业废水中含有对人类和水生生物剧毒的不可生物降解染料。TiO2作为光催化降解产生的溶液,是废水降解的有效光催化剂之一,但其吸附能力较低。为了克服这一缺陷,本研究利用Fe-TiO2/ H-A沸石合成了一种新型光催化剂。采用浸渍法成功合成了该光催化剂,并通过XRD、XRF、SEM、FT-IR和UV-Vis DRS对其进行了系统表征。在2θ = 25.3°处的XRD衍射图显示光催化剂为锐钛矿相。SEM结果显示,该材料表面粗糙柔软,尺寸为491.49 nm。FT-IR分析得到了沸石a的特征带、Ti-O-Ti基团的振动和Fe-O基团的振动。带隙的带宽为3.16 eV。在辐照时间50 min、pH为9、亚甲基蓝浓度为20 mg/L的条件下,亚甲基蓝的光催化降解效率达到89.58%。Fe-TiO2/ H-A沸石作为一种新型光催化剂,可作为净化亚甲基蓝的替代光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-TiO2/zeolite H-A photocatalyst for degradation of waste dye (methylene blue) under UV irradiation
Industrial wastewater contains non-biodegradable dyes that are highly toxic to humans and aquatic life. As solution from photocatalytic degradation, TiO2 is one of the effective photocatalysts for wastewater degradation, but it has low adsorption power. To overcome this deficiency, this study synthesized a new photocatalyst by Fe-TiO2/zeolite H-A. The photocatalyst was successfully synthesized by the impregnation method and was systematically characterized by XRD, XRF, SEM, FT-IR and UV-Vis DRS. XRD diffractogram at 2θ = 25.3° showed anatase phase of the photocatalyst. SEM results showed a rough and soft surface with a size of 491.49 nm. FT-IR analysis obtained the zeolite-A characteristic band, vibration of Ti-O-Ti groups and the vibration of the Fe-O group. The bandwidth of the band gap was 3.16 eV. The photocatalytic efficiency of methylene blue degradation reached 89.58% yield with optimum conditions: irradiation time of 50 min, pH 9 and concentration of methylene blue about 20 mg/L. Fe-TiO2/zeolite H-A as a new photocatalyst can be an alternative photocatalyst to purify methylene blue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1