模拟低碳钢在人工海水中的腐蚀

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2023-01-01 DOI:10.3934/matersci.2023028
Y. M. Pusparizkita, Vivi A. Fardilah, Christian Aslan, J. Jamari, A. Bayuseno
{"title":"模拟低碳钢在人工海水中的腐蚀","authors":"Y. M. Pusparizkita, Vivi A. Fardilah, Christian Aslan, J. Jamari, A. Bayuseno","doi":"10.3934/matersci.2023028","DOIUrl":null,"url":null,"abstract":"The current laboratory experiments investigated the corrosion resistance of carbon steel in artificial seawater (ASW) using the steel coupons hanging on a closed glass reactor of ASW with volume-to-specimen area ratios ranging from 0.20 to 0.40 mL/mm2. These coupons were immersed in ASW for varying time durations (7 and 14 d) at room temperature without agitation. Further, the corrosion rates based on the weight loss and electrochemical analytical method were determined. Following exposure to carbon steel for 7 and 14 d, corrosion rates were 0.2780 mmpy and 0.3092 mmpy, respectively. The surfaces appeared to be not protected by oxides based on this result. The electrochemical impedance spectrometer in potentiostatic/galvanostatic mode, in conjunction with EDX analysis, predicted the evolution of oxygen reduction. The 7th-day immersion sample had a higher oxygen content, and the 14th-day immersion sample had a slightly lower oxygen content. Methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterized the surface morphology and composition of their corrosion product. Corrosion products derived from rust minerals hematite, lepidocrocite and magnetite appeared to cover the carbon steel surface after exposure. This result can get insight into the corrosion behavior of low-carbon steel used in marine environments.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding of low-carbon steel marine corrosion through simulation in artificial seawater\",\"authors\":\"Y. M. Pusparizkita, Vivi A. Fardilah, Christian Aslan, J. Jamari, A. Bayuseno\",\"doi\":\"10.3934/matersci.2023028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current laboratory experiments investigated the corrosion resistance of carbon steel in artificial seawater (ASW) using the steel coupons hanging on a closed glass reactor of ASW with volume-to-specimen area ratios ranging from 0.20 to 0.40 mL/mm2. These coupons were immersed in ASW for varying time durations (7 and 14 d) at room temperature without agitation. Further, the corrosion rates based on the weight loss and electrochemical analytical method were determined. Following exposure to carbon steel for 7 and 14 d, corrosion rates were 0.2780 mmpy and 0.3092 mmpy, respectively. The surfaces appeared to be not protected by oxides based on this result. The electrochemical impedance spectrometer in potentiostatic/galvanostatic mode, in conjunction with EDX analysis, predicted the evolution of oxygen reduction. The 7th-day immersion sample had a higher oxygen content, and the 14th-day immersion sample had a slightly lower oxygen content. Methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterized the surface morphology and composition of their corrosion product. Corrosion products derived from rust minerals hematite, lepidocrocite and magnetite appeared to cover the carbon steel surface after exposure. This result can get insight into the corrosion behavior of low-carbon steel used in marine environments.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本实验室研究了碳钢在人工海水(ASW)中的耐蚀性,采用钢片悬挂在封闭的ASW玻璃反应器上,体积与试样面积比为0.20 ~ 0.40 mL/mm2。这些薄片在室温下不搅拌的情况下浸泡在ASW中不同的时间(7天和14天)。进一步,通过失重和电化学分析方法确定了腐蚀速率。在碳钢中暴露7天和14天后,腐蚀速率分别为0.2780和0.3092 mmpy。根据这一结果,表面似乎没有受到氧化物的保护。电化学阻抗谱仪在恒电位/恒流模式下,结合EDX分析,预测了氧还原的演化过程。浸渍第7天的样品氧含量较高,浸渍第14天的样品氧含量略低。采用x射线衍射(XRD)和扫描电镜(SEM)对其腐蚀产物的表面形貌和组成进行了表征。暴露后碳钢表面出现了由铁锈矿物赤铁矿、绢云母和磁铁矿产生的腐蚀产物。这一结果可以深入了解海洋环境中使用的低碳钢的腐蚀行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding of low-carbon steel marine corrosion through simulation in artificial seawater
The current laboratory experiments investigated the corrosion resistance of carbon steel in artificial seawater (ASW) using the steel coupons hanging on a closed glass reactor of ASW with volume-to-specimen area ratios ranging from 0.20 to 0.40 mL/mm2. These coupons were immersed in ASW for varying time durations (7 and 14 d) at room temperature without agitation. Further, the corrosion rates based on the weight loss and electrochemical analytical method were determined. Following exposure to carbon steel for 7 and 14 d, corrosion rates were 0.2780 mmpy and 0.3092 mmpy, respectively. The surfaces appeared to be not protected by oxides based on this result. The electrochemical impedance spectrometer in potentiostatic/galvanostatic mode, in conjunction with EDX analysis, predicted the evolution of oxygen reduction. The 7th-day immersion sample had a higher oxygen content, and the 14th-day immersion sample had a slightly lower oxygen content. Methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterized the surface morphology and composition of their corrosion product. Corrosion products derived from rust minerals hematite, lepidocrocite and magnetite appeared to cover the carbon steel surface after exposure. This result can get insight into the corrosion behavior of low-carbon steel used in marine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1