D. Malar, M. Prasanth, J. Brimson, Kanika Verma, A. Prasansuklab, T. Tencomnao
{"title":"木槿提取物通过上调谷氨酸转运蛋白,保护HT-22细胞免受谷氨酸诱导的神经变性,并通过DAF-16介导的途径延长秀丽隐杆线虫的寿命","authors":"D. Malar, M. Prasanth, J. Brimson, Kanika Verma, A. Prasansuklab, T. Tencomnao","doi":"10.3233/nha-210131","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Glutamate toxicity is involved in several neurodegenerative conditions, including Alzheimer’s disease. OBJECTIVE: The study aims to investigate the neuroprotective efficacy of ethanol extract of Hibiscus sabdariffa calyces (HS) against glutamate-induced toxicity in HT-22 cells and induce anti-aging property in Caenorhabditis elegans. METHODS: HT-22 cells were pre-treated with HS followed by glutamate and evaluated for the neuroprotective effect using cell viability assay, confocal microscopic analysis, qPCR, Western blot, and docking analysis. Induction of anti-aging property in C. elegans with HS extract was analyzed through physiological assays and qPCR analysis. RESULTS: GC-MS analysis of the HS extract showed the presence of 19 compounds with antioxidant properties including oleamide,2-(diethoxymethyl)furan and 5-methylfurfural. In vitro studies reveal that glutamate exerted toxicity in HT-22 cells by inducing oxidative stress, depleting glutathione, downregulating glutamate transporters, antioxidant genes, inducing autophagy (Beclin-1, Atg-5, Atg-7, LC3-II) by the activation of MAPK (p38, JNK) pathway, and causing apoptosis. However, pre-treatment with HS extract (5, 10μg/ml) reversed the effect and offered neuroprotection. In silico studies showed that the compounds of HS extract can bind effectively and inhibit the activity of NMDAR, calpain-1 and GSK-3β. In C. elegans, HS extended lifespan, reduced the accumulation of lipofuscin, modulated healthspan-related genes and downregulated the expression of daf-2. CONCLUSION: Our results indicate that HS with its bioactive components exhibits neuroprotective activity by upregulating glutamate transporters, inhibiting autophagy and exerts anti-aging property through DAF-16 dependent mechanism.","PeriodicalId":37419,"journal":{"name":"Nutrition and Healthy Aging","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hibiscus sabdariffa extract protects HT-22 cells from glutamate-induced neurodegeneration by upregulating glutamate transporters and exerts lifespan extension in C. elegans via DAF-16 mediated pathway\",\"authors\":\"D. Malar, M. Prasanth, J. Brimson, Kanika Verma, A. Prasansuklab, T. Tencomnao\",\"doi\":\"10.3233/nha-210131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Glutamate toxicity is involved in several neurodegenerative conditions, including Alzheimer’s disease. OBJECTIVE: The study aims to investigate the neuroprotective efficacy of ethanol extract of Hibiscus sabdariffa calyces (HS) against glutamate-induced toxicity in HT-22 cells and induce anti-aging property in Caenorhabditis elegans. METHODS: HT-22 cells were pre-treated with HS followed by glutamate and evaluated for the neuroprotective effect using cell viability assay, confocal microscopic analysis, qPCR, Western blot, and docking analysis. Induction of anti-aging property in C. elegans with HS extract was analyzed through physiological assays and qPCR analysis. RESULTS: GC-MS analysis of the HS extract showed the presence of 19 compounds with antioxidant properties including oleamide,2-(diethoxymethyl)furan and 5-methylfurfural. In vitro studies reveal that glutamate exerted toxicity in HT-22 cells by inducing oxidative stress, depleting glutathione, downregulating glutamate transporters, antioxidant genes, inducing autophagy (Beclin-1, Atg-5, Atg-7, LC3-II) by the activation of MAPK (p38, JNK) pathway, and causing apoptosis. However, pre-treatment with HS extract (5, 10μg/ml) reversed the effect and offered neuroprotection. In silico studies showed that the compounds of HS extract can bind effectively and inhibit the activity of NMDAR, calpain-1 and GSK-3β. In C. elegans, HS extended lifespan, reduced the accumulation of lipofuscin, modulated healthspan-related genes and downregulated the expression of daf-2. CONCLUSION: Our results indicate that HS with its bioactive components exhibits neuroprotective activity by upregulating glutamate transporters, inhibiting autophagy and exerts anti-aging property through DAF-16 dependent mechanism.\",\"PeriodicalId\":37419,\"journal\":{\"name\":\"Nutrition and Healthy Aging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition and Healthy Aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/nha-210131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition and Healthy Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/nha-210131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Hibiscus sabdariffa extract protects HT-22 cells from glutamate-induced neurodegeneration by upregulating glutamate transporters and exerts lifespan extension in C. elegans via DAF-16 mediated pathway
BACKGROUND: Glutamate toxicity is involved in several neurodegenerative conditions, including Alzheimer’s disease. OBJECTIVE: The study aims to investigate the neuroprotective efficacy of ethanol extract of Hibiscus sabdariffa calyces (HS) against glutamate-induced toxicity in HT-22 cells and induce anti-aging property in Caenorhabditis elegans. METHODS: HT-22 cells were pre-treated with HS followed by glutamate and evaluated for the neuroprotective effect using cell viability assay, confocal microscopic analysis, qPCR, Western blot, and docking analysis. Induction of anti-aging property in C. elegans with HS extract was analyzed through physiological assays and qPCR analysis. RESULTS: GC-MS analysis of the HS extract showed the presence of 19 compounds with antioxidant properties including oleamide,2-(diethoxymethyl)furan and 5-methylfurfural. In vitro studies reveal that glutamate exerted toxicity in HT-22 cells by inducing oxidative stress, depleting glutathione, downregulating glutamate transporters, antioxidant genes, inducing autophagy (Beclin-1, Atg-5, Atg-7, LC3-II) by the activation of MAPK (p38, JNK) pathway, and causing apoptosis. However, pre-treatment with HS extract (5, 10μg/ml) reversed the effect and offered neuroprotection. In silico studies showed that the compounds of HS extract can bind effectively and inhibit the activity of NMDAR, calpain-1 and GSK-3β. In C. elegans, HS extended lifespan, reduced the accumulation of lipofuscin, modulated healthspan-related genes and downregulated the expression of daf-2. CONCLUSION: Our results indicate that HS with its bioactive components exhibits neuroprotective activity by upregulating glutamate transporters, inhibiting autophagy and exerts anti-aging property through DAF-16 dependent mechanism.
期刊介绍:
Nutrition and Healthy Aging is an international forum for research on nutrition as a means of promoting healthy aging. It is particularly concerned with the impact of nutritional interventions on the metabolic and molecular mechanisms which modulate aging and age-associated diseases, including both biological responses on the part of the organism itself and its micro biome. Results emanating from both model organisms and clinical trials will be considered. With regards to the latter, the journal will be rigorous in only accepting for publication well controlled, randomized human intervention trials that conform broadly with the current EFSA and US FDA guidelines for nutritional clinical studies. The journal will publish research articles, short communications, critical reviews and conference summaries, whilst open peer commentaries will be welcomed.