改进KNN-SMOreg算法及其在铀中赤铁矿量预测中的应用

Jia Wu, Z. Cai, Zhechao Gao
{"title":"改进KNN-SMOreg算法及其在铀中赤铁矿量预测中的应用","authors":"Jia Wu, Z. Cai, Zhechao Gao","doi":"10.3969/J.ISSN.1005-0930.2011.05.017","DOIUrl":null,"url":null,"abstract":"Hematite,as a typical alteration mineral,plays a very important role in uranium exploration.Traditional modeling method usually treats every feature with the same probability.However,this does not hold in many real world applications,which may also cause the reduction of the accuracy of prediction.We propose a novel method called WKNN-SMOreg,which weights the features according to the association of their attributes on the hybrid of KNN and SMOreg.In this way,the error caused by the features with lower association will be reduced.The experiment results show,compared with KNN,SVM and KNN-SMOreg,the novel method improves the accuracy of prediction,and reduces the negative impact of the noise,which also implies that the new method can be well applied in the prediction of alteration minerals.","PeriodicalId":34897,"journal":{"name":"应用基础与工程科学学报","volume":"2011 1","pages":"842-851"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved KNN-SMOreg algorithm and its application in predicting the amount of hematite from uranium\",\"authors\":\"Jia Wu, Z. Cai, Zhechao Gao\",\"doi\":\"10.3969/J.ISSN.1005-0930.2011.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematite,as a typical alteration mineral,plays a very important role in uranium exploration.Traditional modeling method usually treats every feature with the same probability.However,this does not hold in many real world applications,which may also cause the reduction of the accuracy of prediction.We propose a novel method called WKNN-SMOreg,which weights the features according to the association of their attributes on the hybrid of KNN and SMOreg.In this way,the error caused by the features with lower association will be reduced.The experiment results show,compared with KNN,SVM and KNN-SMOreg,the novel method improves the accuracy of prediction,and reduces the negative impact of the noise,which also implies that the new method can be well applied in the prediction of alteration minerals.\",\"PeriodicalId\":34897,\"journal\":{\"name\":\"应用基础与工程科学学报\",\"volume\":\"2011 1\",\"pages\":\"842-851\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用基础与工程科学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.1005-0930.2011.05.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用基础与工程科学学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1005-0930.2011.05.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

赤铁矿作为一种典型的蚀变矿物,在铀矿找矿中起着十分重要的作用。传统的建模方法通常以相同的概率对待每一个特征。然而,这在许多现实世界的应用中并不成立,这也可能导致预测准确性的降低。我们提出了一种新的方法WKNN-SMOreg,该方法在KNN和SMOreg混合的基础上,根据特征的属性关联对特征进行加权。这样可以减少关联度较低的特征所带来的误差。实验结果表明,与KNN、SVM和KNN- smoreg相比,该方法提高了预测精度,减小了噪声的负面影响,可以很好地应用于蚀变矿物预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved KNN-SMOreg algorithm and its application in predicting the amount of hematite from uranium
Hematite,as a typical alteration mineral,plays a very important role in uranium exploration.Traditional modeling method usually treats every feature with the same probability.However,this does not hold in many real world applications,which may also cause the reduction of the accuracy of prediction.We propose a novel method called WKNN-SMOreg,which weights the features according to the association of their attributes on the hybrid of KNN and SMOreg.In this way,the error caused by the features with lower association will be reduced.The experiment results show,compared with KNN,SVM and KNN-SMOreg,the novel method improves the accuracy of prediction,and reduces the negative impact of the noise,which also implies that the new method can be well applied in the prediction of alteration minerals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用基础与工程科学学报
应用基础与工程科学学报 Engineering-Engineering (all)
CiteScore
1.60
自引率
0.00%
发文量
2784
期刊介绍:
期刊最新文献
Influence of Recharge Solution Salinity upon the Thermal Transfer Characteristics in Energy Storage Superficial Brackish Aquifers Numerical Simulation of the Optimal Impeller Radius in An Oxidation Ditch Quantity method of river bed surface form based on fractal theory The Application of 3D Surface Metrology in Characterization of Femoral Stem Wear Estimating Potential Evaporation in Lhasa River Basin: Improved Dalton Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1