氧化沟内最佳叶轮半径的数值模拟

Yuling Liu, Bing Lü, Wenli Wei
{"title":"氧化沟内最佳叶轮半径的数值模拟","authors":"Yuling Liu, Bing Lü, Wenli Wei","doi":"10.3969/J.ISSN.1005-0930.2014.01.009","DOIUrl":null,"url":null,"abstract":"Impellers are the main power source for oxidation ditches. An impeller radius has an important influence on the flow field structure in an oxidation ditch channel. The effect of the size of impeller radius on the structure of flow fields in an oxidation ditch was studied by using the two-phase gas-liquid model and the 3D Realizable k-e turbulence model. The PISO( Pressure-Implicit with Splitting of Operators) algorithm was used for the solution of velocity and pressure. The VOF( Volume Of Fluid) method was used to simulate water free surface. The concept of optimal radius ratio was introduced to analyze the simulation results. When the ratio of the impeller radius to the diameter of the oxidation ditch channel bend,r / d was 0. 218,the percentage of the fluid with velocity greater than 0. 3m / s to the entire fluid was the greatest,and that the length of the backflow region in the straight channel was the shortest. The ratio of impeller radius to the diameter of an oxidation ditch channel bend,r / d with a value of 0. 218,is called the optimal impeller radius ratio.","PeriodicalId":34897,"journal":{"name":"应用基础与工程科学学报","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of the Optimal Impeller Radius in An Oxidation Ditch\",\"authors\":\"Yuling Liu, Bing Lü, Wenli Wei\",\"doi\":\"10.3969/J.ISSN.1005-0930.2014.01.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impellers are the main power source for oxidation ditches. An impeller radius has an important influence on the flow field structure in an oxidation ditch channel. The effect of the size of impeller radius on the structure of flow fields in an oxidation ditch was studied by using the two-phase gas-liquid model and the 3D Realizable k-e turbulence model. The PISO( Pressure-Implicit with Splitting of Operators) algorithm was used for the solution of velocity and pressure. The VOF( Volume Of Fluid) method was used to simulate water free surface. The concept of optimal radius ratio was introduced to analyze the simulation results. When the ratio of the impeller radius to the diameter of the oxidation ditch channel bend,r / d was 0. 218,the percentage of the fluid with velocity greater than 0. 3m / s to the entire fluid was the greatest,and that the length of the backflow region in the straight channel was the shortest. The ratio of impeller radius to the diameter of an oxidation ditch channel bend,r / d with a value of 0. 218,is called the optimal impeller radius ratio.\",\"PeriodicalId\":34897,\"journal\":{\"name\":\"应用基础与工程科学学报\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用基础与工程科学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.1005-0930.2014.01.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用基础与工程科学学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1005-0930.2014.01.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

叶轮是氧化沟的主要动力源。叶轮半径对氧化沟通道内的流场结构有重要影响。采用气液两相模型和三维可实现k-e湍流模型,研究了叶轮半径大小对氧化沟内流场结构的影响。采用PISO(pressure - implicit with Splitting算子)算法求解速度和压力。采用流体体积法(Volume Of Fluid)模拟水的自由表面。引入最优半径比的概念,对仿真结果进行分析。当叶轮半径与氧化沟通道弯道直径之比为0时,r / d = 0。218,流速大于0的流体百分比。3m / s流速最大,直流道内回流区长度最短。叶轮半径与氧化沟沟道弯道直径之比r / d,取值为0。218、称为最佳叶轮半径比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of the Optimal Impeller Radius in An Oxidation Ditch
Impellers are the main power source for oxidation ditches. An impeller radius has an important influence on the flow field structure in an oxidation ditch channel. The effect of the size of impeller radius on the structure of flow fields in an oxidation ditch was studied by using the two-phase gas-liquid model and the 3D Realizable k-e turbulence model. The PISO( Pressure-Implicit with Splitting of Operators) algorithm was used for the solution of velocity and pressure. The VOF( Volume Of Fluid) method was used to simulate water free surface. The concept of optimal radius ratio was introduced to analyze the simulation results. When the ratio of the impeller radius to the diameter of the oxidation ditch channel bend,r / d was 0. 218,the percentage of the fluid with velocity greater than 0. 3m / s to the entire fluid was the greatest,and that the length of the backflow region in the straight channel was the shortest. The ratio of impeller radius to the diameter of an oxidation ditch channel bend,r / d with a value of 0. 218,is called the optimal impeller radius ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用基础与工程科学学报
应用基础与工程科学学报 Engineering-Engineering (all)
CiteScore
1.60
自引率
0.00%
发文量
2784
期刊介绍:
期刊最新文献
Influence of Recharge Solution Salinity upon the Thermal Transfer Characteristics in Energy Storage Superficial Brackish Aquifers Numerical Simulation of the Optimal Impeller Radius in An Oxidation Ditch Quantity method of river bed surface form based on fractal theory The Application of 3D Surface Metrology in Characterization of Femoral Stem Wear Estimating Potential Evaporation in Lhasa River Basin: Improved Dalton Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1