{"title":"微生物降解干扰内分泌的有机化合物和药物化合物的环境残留物","authors":"J. Gu, Y. Wang","doi":"10.3969/J.ISSN.1008-8873.2003.01.001","DOIUrl":null,"url":null,"abstract":"Synthetic organic pollutants are not only toxic and accumulative but also able to induce malformation and mutation. Contamination of synthetic compounds in environment disrupts the endocrine system in organisms including human beings. Developed countries have established regulations to limit and control the amount of these compounds in water and food chain. It is clearly known that some herbicides and insecticides (e.g. atrazine and DDT), and plasticizers are all endocrine-disrupting organics, which have adverse effect on the normal development of organisms. These compounds, however, present widely in the environment. The concentration could be extremely high under special circumstance. For example, as high as 10 g · L-1 of phthalic acid and dimethyl phthalate ester (DMPE) were found in landfill leachate. According to our investigation on microbial degradation of phthalic acid and DMPE, enrichment culture obtained from activated sludge and mangrove can mineralize this kind of compounds within short period of time. It is also found that single bacterial species is not able to completely degrade DMPE. Consortium of two or three pure species could mineralize DMPE at a concentration of 500 mg·L-1 within one week. Two degradation intermediates were isolated and identified, and degradation pathway has been established in our investigation. It has been approved that environmental hormone such as DMPE could be mineralized by microorganisms. On the other hand, environmental residues of pharmaceutical compounds are an emerging problem and more attention should be paid to conduct research in this field.","PeriodicalId":68437,"journal":{"name":"生态科学","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial degradation of endocrine-disrupting organic compounds and environmental residues of pharmaceutical compounds\",\"authors\":\"J. Gu, Y. Wang\",\"doi\":\"10.3969/J.ISSN.1008-8873.2003.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic organic pollutants are not only toxic and accumulative but also able to induce malformation and mutation. Contamination of synthetic compounds in environment disrupts the endocrine system in organisms including human beings. Developed countries have established regulations to limit and control the amount of these compounds in water and food chain. It is clearly known that some herbicides and insecticides (e.g. atrazine and DDT), and plasticizers are all endocrine-disrupting organics, which have adverse effect on the normal development of organisms. These compounds, however, present widely in the environment. The concentration could be extremely high under special circumstance. For example, as high as 10 g · L-1 of phthalic acid and dimethyl phthalate ester (DMPE) were found in landfill leachate. According to our investigation on microbial degradation of phthalic acid and DMPE, enrichment culture obtained from activated sludge and mangrove can mineralize this kind of compounds within short period of time. It is also found that single bacterial species is not able to completely degrade DMPE. Consortium of two or three pure species could mineralize DMPE at a concentration of 500 mg·L-1 within one week. Two degradation intermediates were isolated and identified, and degradation pathway has been established in our investigation. It has been approved that environmental hormone such as DMPE could be mineralized by microorganisms. On the other hand, environmental residues of pharmaceutical compounds are an emerging problem and more attention should be paid to conduct research in this field.\",\"PeriodicalId\":68437,\"journal\":{\"name\":\"生态科学\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生态科学\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.1008-8873.2003.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生态科学","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1008-8873.2003.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial degradation of endocrine-disrupting organic compounds and environmental residues of pharmaceutical compounds
Synthetic organic pollutants are not only toxic and accumulative but also able to induce malformation and mutation. Contamination of synthetic compounds in environment disrupts the endocrine system in organisms including human beings. Developed countries have established regulations to limit and control the amount of these compounds in water and food chain. It is clearly known that some herbicides and insecticides (e.g. atrazine and DDT), and plasticizers are all endocrine-disrupting organics, which have adverse effect on the normal development of organisms. These compounds, however, present widely in the environment. The concentration could be extremely high under special circumstance. For example, as high as 10 g · L-1 of phthalic acid and dimethyl phthalate ester (DMPE) were found in landfill leachate. According to our investigation on microbial degradation of phthalic acid and DMPE, enrichment culture obtained from activated sludge and mangrove can mineralize this kind of compounds within short period of time. It is also found that single bacterial species is not able to completely degrade DMPE. Consortium of two or three pure species could mineralize DMPE at a concentration of 500 mg·L-1 within one week. Two degradation intermediates were isolated and identified, and degradation pathway has been established in our investigation. It has been approved that environmental hormone such as DMPE could be mineralized by microorganisms. On the other hand, environmental residues of pharmaceutical compounds are an emerging problem and more attention should be paid to conduct research in this field.
期刊介绍:
Ecological Science (a bimonthly journal), founded in 1982, is an academic journal of natural sciences jointly organized by the Ecological Society of Guangdong Province and Jinan University, jointly published by Ecological Science Magazine and Science Publishing House, and openly circulated both at home and abroad.
The journal adheres to the tenet of “promoting ecological science culture and ecological academic innovation”, mainly publishes innovative research results and academic papers in the field of ecology, reflects the academic level and development trend of ecology in China in a timely manner, traces the frontiers of ecological disciplines, and promotes the domestic and international academic exchanges, cooperation and talent cultivation.
The readers of the journal are mainly scientific and technological workers engaged in ecology-related research, teaching and production, postgraduate students of relevant specialties and managers of economic management and decision-making departments.